ABSORBING AREAS

We begin with a brief introduction to the concept of absorption
in one and two dimensions, and then study an exemplary bifurca-
tion sequence.

4.1 ABSORBTION CONCEPTS, 1D

We introduced in Chapter 2 the notions of critical points, which
bound zones of multiplicity, and trapping intervals, which are
mapped into themselves. These notions come together in the con-
cept of an absorbing interval. Thisisan interval in the domain of
the map which is trapping, is bounded by critical points, and is
super-attracting, which means that every point sufficiently close to
the critical endpoints will jump into the absorbing interval after a
finite number of applications of the map.

In the context of an iterated map of an interval, the interesting
dynamics take place within absorbing intervals. The critical points
of a one-dimensional map determine absorbing intervals, and are
useful in characterizing some bifurcations, especialy those called
global bifurcations. Examples of global bifurcations occur in Chap-
ter 7.

4.2 ABSORBTION CONCEPTS, 2D

In two-dimensional iterations, we have a notion of absorbing
area, generalizing the absorbing intervals of the one-dimensional
case. Thecritical curves of amap of the plane play arole analogous
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to that of the critical points of a one-dimensional map: they are use-
ful in determining absorbing areas. We will now illustrate the role
of critical curvesin determining these important areas in which the
interesting dynamics occur.

In this chapter we will study the first family of quadratic maps
defined in the Introduction. We will now use the map of this family
determined by b = — 0.8 to illustrate the use of critical curvesto
determine an absorbing area.

Our map has two fixed points, P and Q. The basic critical
curve, L, isthe locus of points with “coincident preimages,” that is,
the set of points having nearby points with different numbers of
preimages or rank 1 (see Appendix 3, especially A3.2 —A3.3, for
definitions). The fundamental critical curve L_; is defined as the
preimage of L. Thus, L istheimage of L_; under the map. Simi-
larly, the derived critical curve L, istheimage of L, and so on. All
of these are called critical curves, as described in Chapter 2.

Note for those who have studied vector calculus: In the context
of ageneric smooth map, the fundamental critical curve L_; will be
a subset of the set of critical pointsin the Jacobian sense, points at
which the Jacobian derivative of the map (alinear transformation)
is degenerate (not alinear isomorphism), while the basic critical
curve L isasubset of the set of critical valuesin the Jacobian sense.
Inflection points are Jacobian critical points which do not belong to
L.

For this particular map, L_; isthevertical axis,x=0, and L isa
horizontal line, y = b =—0.8. It will be convenient to choose a
bounded interval in L_;, S_;, with endpoints a_, , which is the ori-
gin (0, 0), and a,, which istheimage of a_; under the map, the
point (0, —0.8).

Note: The critical curve denoted by L in the text is denoted by
L, inthefigures.

Figure 4-1 shows all these features and more. Note the points
a_, and a,, and the segmentsof L_;, L, L,..., L,. Asthemap
moves L_, toL, andthepoint a_; to a,, L ismovedto L,, and the
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FIGURE 4-1.
) a=0.7 b=-0.8
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point a, toapoint a; inL;.The transversal® (and here, indeed,
orthogonal) crossing of L_; and L at &, is transformed into atan-
gent contact of L and L, at a;. Then this point is mapped to a
tangency of L, and L, at a,, and so on. Note that the curve L,
crosses L_, at thepoint p,, so L istangent to L at the point p, , the
image of p,, and so on. Similarly, the curve L5 crosses L_, at the
point by, so L, istangent to L at b, , theimage of b, and so on.

It is worthwhile to pause here and carefully study Figure 4-1. A
point of transversal crossing of any curve, C, through L_; is
mapped into a point of tangency of the image of that curve, f(C),
with L. Thisis because of the folding which occursas L_; is
mapped onto L. Also, a point of tangency of a curve C to the curve
L_, ismapped into a point of tangency of the image curve f(C) and
L.

1. Anintersection of two curvesis said to betransversal if they cross cleanly through each
other in asingle point, and are not tangent to each other.
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FIGURE 4-2.

a=0.7 b=-0.8

An annular absorb-
ing area bounded
by critical curves.

The action of the map may be visualized as a nonlinear folding
of the plane at the fundamental critical curve, L_,, followed by a
nonlinear rotation moving L_; to L around the point a,, and a non-
linear translation horizontally along L, so that a_; endsup at a,,.
The critical curves shown in Fig. 4-1 are akind of skeleton of the
map, as we shall see.

Our next goal isto use these critical curvesto discover an
absorbing area of the map. By definition (see Appendix A3.5), an
absorbing areais aregion of the plane such that:

* itismapped into (or onto) itself;

* itsboundary is made up of segments of critical curves, or of

limit points of an infinite sequence of critical curves,; and

» it hasaneighborhood every point of which eventually

moves into the absorbing area.

Asan example, notein Fig. 4-1that thearcs bya; of L, a;a, of
L,, ayaz of L,, aza, of Ly, and a,b; of L, bound aregiond',
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shown shaded in Fig. 4-1. This shaded region happens to be an
absorbing areal First of al, it isinvariant. For example, the segment
a,b, of L, ison the boundary of the region, d', but the image of
thisarc, agh,, isinternal tod'. Thisisclearly shownin Fig. 4-2, in
which the image of a,b, isindicated in L.

Also, d' isabsorbing: A point external to d’ is mapped into d’
in afinite number of iterations, as shown in Fig. 4-3, and thisisthe
case for all points sufficiently near to d'.

Figure 4-2. also shows a shaded area, d',,, bounded by the criti-
cal curve segmentsintroduced in Fig. 4-1. It surroundsahole, W, in
which the fixed point Q islocated. Thisisasmaller absorbing area,
and is called an annular absorbing area for obvious reasons. Gen-
erally, absorbing areas may be topologically more complex, with
many holes, and with many separate pieces.

Absorbing areas must contain attractors. One, d, isshown asa
cloud of dotsin Fig. 4-3. It isthe attracting set of d', and of the
smaller absorbing area, d',, as well.

Usually there are smaller and smaller absorbing areas around
any attractor of the map. All these, by definition, are bounded by
critical arcs. And asthey get smaller and smaller, but always
enclose the same attractor, it isto be expected that the attractor
itself is bounded by critical arcs, or by limit points of infinite
sequences of critical arcs. Figure 4-4. shows 25 iterates of two
intervalsof L_,, thetwo piecesof d n L_; . These iterates bound
the attractor shown in Fig. 4-3 quite closely.

Another basic concept of dynamicsisthe basin of attraction of
an attractor. In the method of critical curves, we usually determine
an absorbing area by the method illustrated above, and thus the
attractor within it, and then determine the basin of attraction of the
absorbing area. In Fig. 4-5 the basin of attraction, D(d'), is shown
asthe whiteregion. Its boundary is made up of the repelli n? (nodal)
fixed point, P, the saddle 2-cycle {Q,, Q,}, and itsinsets.” The
points of the gray region go off to infinity. That is, their trajectories

1. By inset of P we mean the set of points attracted to P, also called the stable set of P.
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FIGURE 4-3.

Theattractor within
the annular absorb-
ing area.

a=0.7 b=-0.8

FIGURE 4-4.

Critical curves con-
verging to the
boundary of the
attractor.

a=0.7 b=-0.8
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FIGURE 4-5.

The attractor in its a=0.7 b=-0.8

basin.

are unbounded. We call this set the basin of infinity, D(c). The
white area D(d") (excluding the fixed point Q and itsrank 1 preim-
age Q_; inZ,) isthe basin of the attractor d.
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4.3 EXEMPLARY BIFURCATION SEQUENCE

In thisfirst exemplary bifurcation sequence, we use the first
family with a= 0.7, and decrease b from — 0.4 to — 1.0, in seven
stages.1 For these values of b, our map aways has two fixed points,
P and Q, given by:

P. x = ———————(1_a2+ /\/8)

(1-a—./3)
2

Yy = (1-a)x

Q x = , Y = (1-a)x

where 3 = (1-a)?2—4b . Also, thereisa2-cycle, {Q,, Q,}.
Stagel: b=-04

Here, the point Q, at about (— 0.5, — 0.15), is an attractive fixed
point. As b decreases, a Neimark-Hopf bifurcation occurs. The
fixed point Q becomes arepellor and the curve I appears as an
attractiveinvariant cycle, I' (aclosed curve mapped onto itself) that
gradually increasesin size as b continues to decrease.

Stage2: b=-0.5

In Fig. 4-6, we see the point repellor Q within the attractive
cycle I, and surrounding that, our first absorbing area, d’, shown
shaded in Fig. 4-7. Thisareais mapped into itself, is bounded by
arcs of critical curves, and is attractive (see Appendix 3.5 for the
precise definition). In this case, the absorbing areais bounded by
the arcs of the critical curves, L, L, L,, L, and L,. These bound-
ing arcs are generated by successive iterations of the map, aswe
now describe.

1. We follow the paper BB.
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FIGURE 4-6.
a=0.7 b=-0.8
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FIGURE 4-7.
a=0.7 b=-05

Q.

ABSORBING AREAS49



FIGURE 4-8.

Noticein Fig. 4-7, which shows the critical arcsin more detail,
that L_, and L are straight lines, crossing orthogonally in one point.
Let a, denote this point, (0, —0.5). Sinceit belongsto L, it hasa
unique preimage, a_;, in L_; . Inthiscase a_, istheorigin (0, 0).

Keeping theinterval a_; a, in mind, we now draw the succes-
sive images of the halfline of L_; issuing from a_; and containing
ay, that is, issuing downwards. The fourth image, lying within L,
crossestheinterval a_; a,, asshown in Fig. 4-7. At this event our
constructive procedure ends, we have found an absorbing area,
shown shaded in thisfigure. Further successive images of the seg-
ment converge on I, as shown in the blowup, Fig. 4-8. This
procedure may be called Procedure 1. A related procedureisillus-
trated in the next stage.

Asb continues to decrease, I' expands further and eventually
crossesL_;.
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Stage3: b=-0.6

Inthiscase " crosses L_, inthetwo points p, and . as
shown in Fig. 4-9. The wavy shape of " is a consequence of this
crossing, and may be understood as follows.

Apply the map to the configuration shown in Fig. 4-9. The
points p, and ¢, are mapped into the points p, and g, alsoon I .
The straight line segment of L_; between p, and g, is mapped into
the straight line segment of L between p; and g, . Because the map
folds the plane two-to-one while moving L_; to L, the curved seg-
ment of [ between p, and g, is carried into the curved segment of
I" between p, and q,, which is abovetheline L. The transversal
crossings of I through the line L_; are mapped into tangencies of
" with L at the points p, and g, . These tangencies are shown
clearly in the enlargement, Fig. 4-10. Thisisauniversal property of
curvescrossing L_, : All crossings are mapped into tangencies, or
contacts, because the map folds the plane at L_; and maps the two
sidesof L_; onto just oneside of L. Hence, I' obtains awave from
the image of its segment which has crossed L _; .

Another effect of these tangenciesisthat I' is now tangent to
the boundary of the absorbing area d' identified in Stage 2 above,
asshownin Fig. 4-11. This absorbing areamay be found by the fol-
lowing method, called Procedure 2.

Consider the straight linesegment S ; froma_; toa,inlL_; as
above, and construct its successive images a,,,a,,,, ; by repeated
applications of the map, until the first crossing with L_; , inthe
point b,. Seethat thefirstimageof S_;, S,, isastraight line seg-
ment from a, to a, inL. The second image, S;, isawave from a;
toa, inLy, likewiseS, inL,, S;inlLz,and S, inL,. ButS,
crosses L_,, and thus by, isfound. Let A_; denote the straight line
segment from by toa, inL_;. Then A_; containsthe segment S ;
constructed just above, and itsimage A, is a straight line segment
from b, toa; inL, containing S,. Now the curve segments A, S;,
S,, S;, B enclose the absorbing area d’, where B is the curve seg-
ment from a, b, within S, and L, as shown in Fig. 4-12.
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FIGURE 4-9.

a=0.7 b=-06

FIGURE 4-10.

a=0.7 b=-0.6
L.
r
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FIGURE 4-11.
a=0.7 b=-0.6

FIGURE 4-12.
a=0.7 b=-0.6
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FIGURE 4-13.

a=0.7 b=-0.6

At this stage, we may see yet another absorbing area, which is
annular in shape. That is, it has ahole. Thisis shown bounded by
shaded curvesin the enlargement of Fig. 4-13. Its boundary is con-
structed of successive images of the straight line segment A_; from
by to &, in L_; . The attractive invariant curve, I, is tangent to the
external boundary of this annular absorbing area, aswell asto its
interior boundary.

Asb decreases further, many bifurcations occur in the dynamics
within these absorbing areas. Probably they have not all been dis-
covered, but we show just afew eventsin the remaining figures of
this chapter.
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Stage4: b=-0.72

At this stage there is an attractive periodic cycle of period 11.
The points of this cycle are labelled in iteration sequencein Fig. 4-
14. This 11-cycle persists as b decreases further, through very many
more bifurcations. The movie on the CD-ROM reveals an astonish-
ing number of these, and many more have been observed, evenin
an interval of b values as narrow as 0.001.

FIGURE 4-14.
a=0.7 b=-0.72
The attractive 11-

cycle. Note the per-
mutation sequence
indicated by the 5
numbers.

11

10
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Stage 5: b=-0.78

At this stage we find two attractors coexisting within the
annular absorbing area, a 28-cycle and an 11-piece chaotic
attractor. These are shown in Fig. 4-15. Near b = 0.798, there is
an explosion to a chaotic attractor filling an annular absorbing
area.

FIGURE 4-15.

. a=0.7 b=-0.78
The 11-cyclic cha-
otic attractor. The Q.
permutation of the
pieces follows the
numbering of Fig.

4-14. { : (7 D ° .
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Stage 6: b =—0.7989995

Fig. 4-16 shows the chaotic attractor, bounded by critical
curves. Passing below b = — 0.8, there are a number of additional
bifurcations which have been studied on the research frontier. Some
of them will be described later in this book. Approaching b =— 1.0,
further explosions are found.

FIGURE 4-16.

a=0.7 b=-0.7989995
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Stage 7: b=-0.975

The densely dotted region of Fig. 4-17 isalarge chaotic attrac-
tor, an annular chaotic area, d. The frontier, F, of its basin of
attraction, includes the inset of the 2-cycle, { Q;, Q,}. The bound-
ary of disvery near F. Thisfigure shows that the critical curves (on
the boundary of the former chaotic area) are about to touch (and
then to cross) the inset of the 2-cycle.

The enlargement of Fig. 4-18 shows that, in addition, a contact
of the frontier, F, with the boundary on L is about to occur. This
contact bifurcation, described in Chapter 7, has the effect of
destroying the chaotic attractor, or rather, of transforming it into a
chaotic repellor. Now, amost al of the trajectories diverge to infin-
ity, except for a Cantor set surviving inside the former chaotic area.

A rough idea of the basin of infinity, D(e), isshown in Fig. 4-
19 asablack area. The basin of infinity includes infinitely many
holes in the former absorbing area, d’, only afew of which are
shown in thisfigure. Thelight areaisthe basin of attraction of the
attractor d. An enlargement is shown in Fig, 4-20.
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FIGURE 4-17.
a=0.7 b=-0.974

FIGURE 4-18.

a=0.7 b=-0.9745
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FIGURE 4-19.

a=0.7 b=-0.975

FIGURE 4-20.
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