# **ABSORBING AREAS**

We begin with a brief introduction to the concept of absorption in one and two dimensions, and then study an exemplary bifurcation sequence.

## 4.1 ABSORBTION CONCEPTS, 1D

We introduced in Chapter 2 the notions of critical points, which bound zones of multiplicity, and trapping intervals, which are mapped into themselves. These notions come together in the concept of an *absorbing interval*. This is an interval in the domain of the map which is trapping, is bounded by critical points, and is *super-attracting*, which means that every point sufficiently close to the critical endpoints will jump into the absorbing interval after a finite number of applications of the map.

In the context of an iterated map of an interval, the interesting dynamics take place within absorbing intervals. The critical points of a one-dimensional map determine absorbing intervals, and are useful in characterizing some bifurcations, especially those called global bifurcations. Examples of global bifurcations occur in Chapter 7.

# 4.2 ABSORBTION CONCEPTS, 2D

In two-dimensional iterations, we have a notion of *absorbing area*, generalizing the absorbing intervals of the one-dimensional case. The critical curves of a map of the plane play a role analogous

to that of the critical points of a one-dimensional map: they are useful in determining absorbing areas. We will now illustrate the role of critical curves in determining these important areas in which the interesting dynamics occur.

In this chapter we will study the first family of quadratic maps defined in the Introduction. We will now use the map of this family determined by b = -0.8 to illustrate the use of critical curves to determine an absorbing area.

Our map has two fixed points, *P* and *Q*. The *basic critical curve*, *L*, is the locus of points with "coincident preimages," that is, the set of points having nearby points with different numbers of preimages or rank 1 (see Appendix 3, especially A3.2 - A3.3, for definitions). The *fundamental critical curve*  $L_{-1}$  is defined as the preimage of *L*. Thus, *L* is the image of  $L_{-1}$  under the map. Similarly, the *derived critical curve*  $L_1$  is the image of *L*, and so on. All of these are called *critical curves*, as described in Chapter 2.

Note for those who have studied vector calculus: In the context of a generic smooth map, the fundamental critical curve  $L_{-1}$  will be a subset of the set of *critical points* in the Jacobian sense, points at which the Jacobian derivative of the map (a linear transformation) is degenerate (not a linear isomorphism), while the basic critical curve L is a subset of the set of *critical values* in the Jacobian sense. Inflection points are Jacobian critical points which do not belong to  $L_{-1}$ .

For this particular map,  $L_{-1}$  is the vertical axis, x = 0, and L is a horizontal line, y = b = -0.8. It will be convenient to choose a bounded interval in  $L_{-1}$ ,  $S_{-1}$ , with endpoints  $a_{-1}$ , which is the origin (0, 0), and  $a_0$ , which is the image of  $a_{-1}$  under the map, the point (0, -0.8).

*Note*: The critical curve denoted by L in the text is denoted by  $L_0$  in the figures.

Figure 4-1 shows all these features and more. Note the points  $a_{-1}$  and  $a_0$ , and the segments of  $L_{-1}$ , L,  $L_1$ ,...,  $L_4$ . As the map moves  $L_{-1}$  to L, and the point  $a_{-1}$  to  $a_0$ , L is moved to  $L_1$ , and the



point  $a_0$  to a point  $a_1$  in  $L_1$ . The transversal<sup>1</sup> (and here, indeed, orthogonal) crossing of  $L_{-1}$  and L at  $a_0$  is transformed into a tangent contact of L and  $L_1$  at  $a_1$ . Then this point is mapped to a tangency of  $L_1$  and  $L_2$  at  $a_2$ , and so on. Note that the curve  $L_2$  crosses  $L_{-1}$  at the point  $p_0$ , so  $L_3$  is tangent to L at the point  $p_1$ , the image of  $p_0$ , and so on. Similarly, the curve  $L_3$  crosses  $L_{-1}$  at the point  $b_0$ , so  $L_4$  is tangent to L at  $b_1$ , the image of  $b_0$ , and so on.

It is worthwhile to pause here and carefully study Figure 4-1. A point of transversal crossing of any curve, C, through  $L_{-1}$  is mapped into a point of tangency of the image of that curve, f(C), with L. This is because of the *folding* which occurs as  $L_{-1}$  is mapped onto L. Also, a point of tangency of a curve C to the curve  $L_{-1}$  is mapped into a point of tangency of the image curve f(C) and L.

<sup>1.</sup> An intersection of two curves is said to be *transversal* if they cross cleanly through each other in a single point, and are not tangent to each other.



The action of the map may be visualized as a nonlinear folding of the plane at the fundamental critical curve,  $L_{-1}$ , followed by a nonlinear rotation moving  $L_{-1}$  to L around the point  $a_0$ , and a nonlinear translation horizontally along L, so that  $a_{-1}$  ends up at  $a_0$ . The critical curves shown in Fig. 4-1 are a kind of skeleton of the map, as we shall see.

Our next goal is to use these critical curves to discover an absorbing area of the map. By definition (see Appendix A3.5), an absorbing area is a region of the plane such that:

- it is mapped into (or onto) itself;
- its boundary is made up of segments of critical curves, or of limit points of an infinite sequence of critical curves; and
- it has a neighborhood every point of which eventually moves into the absorbing area.

As an example, note in Fig. 4-1 that the arcs  $b_1a_1$  of L,  $a_1a_2$  of  $L_1$ ,  $a_2a_3$  of  $L_2$ ,  $a_3a_4$  of  $L_3$ , and  $a_4b_1$  of  $L_4$  bound a region d',

shown shaded in Fig. 4-1. This shaded region happens to be an absorbing area! First of all, it is invariant. For example, the segment  $a_4b_1$  of  $L_4$  is on the boundary of the region, d', but the image of this arc,  $a_5b_2$ , is internal to d'. This is clearly shown in Fig. 4-2, in which the image of  $a_4b_1$  is indicated in  $L_5$ .

Also, d' is absorbing: A point external to d' is mapped into d' in a finite number of iterations, as shown in Fig. 4-3, and this is the case for all points sufficiently near to d'.

Figure 4-2. also shows a shaded area,  $d'_a$ , bounded by the critical curve segments introduced in Fig. 4-1. It surrounds a hole, W, in which the fixed point Q is located. This is a smaller absorbing area, and is called an *annular absorbing area* for obvious reasons. Generally, absorbing areas may be topologically more complex, with many holes, and with many separate pieces.

Absorbing areas must contain attractors. One, d, is shown as a cloud of dots in Fig. 4-3. It is the attracting set of d', and of the smaller absorbing area,  $d'_a$ , as well.

Usually there are smaller and smaller absorbing areas around any attractor of the map. All these, by definition, are bounded by critical arcs. And as they get smaller and smaller, but always enclose the same attractor, it is to be expected that the attractor itself is bounded by critical arcs, or by limit points of infinite sequences of critical arcs. Figure 4-4. shows 25 iterates of two intervals of  $L_{-1}$ , the two pieces of  $d \cap L_{-1}$ . These iterates bound the attractor shown in Fig. 4-3 quite closely.

Another basic concept of dynamics is the basin of attraction of an attractor. In the method of critical curves, we usually determine an absorbing area by the method illustrated above, and thus the attractor within it, and then determine the basin of attraction of the absorbing area. In Fig. 4-5 the basin of attraction, D(d'), is shown as the white region. Its boundary is made up of the repelling (nodal) fixed point, *P*, the saddle 2-cycle  $\{Q_1, Q_2\}$ , and its insets.<sup>1</sup> The points of the gray region go off to infinity. That is, their trajectories

1. By *inset* of *P* we mean the set of points attracted to *P*, also called the *stable set* of *P*.



The attractor within the annular absorb-ing area.





#### FIGURE 4-4.

Critical curves converging to the boundary of the attractor.





are unbounded. We call this set the basin of infinity,  $D(\infty)$ . The white area D(d') (excluding the fixed point Q and its rank 1 preimage  $Q_{-1}$  in  $Z_0$ ) is the basin of the attractor d.

## 4.3 EXEMPLARY BIFURCATION SEQUENCE

In this first exemplary bifurcation sequence, we use the first family with a = 0.7, and decrease b from -0.4 to -1.0, in seven stages.<sup>1</sup> For these values of b, our map always has two fixed points, P and Q, given by:

$$P: x = \frac{(1 - a + \sqrt{\delta})}{2}, y = (1 - a)x$$
$$Q: x = \frac{(1 - a - \sqrt{\delta})}{2}, y = (1 - a)x$$

where  $\delta = (1-a)^2 - 4b$ . Also, there is a 2-cycle,  $\{Q_1, Q_2\}$ .

#### Stage 1: b = -0.4

Here, the point Q, at about (-0.5, -0.15), is an attractive fixed point. As *b* decreases, a Neimark-Hopf bifurcation occurs. The fixed point Q becomes a repellor and the curve  $\Gamma$  appears as an attractive invariant cycle,  $\Gamma$  (a closed curve mapped onto itself) that gradually increases in size as *b* continues to decrease.

## Stage 2: b = -0.5

In Fig. 4-6, we see the point repellor Q within the attractive cycle  $\Gamma$ , and surrounding that, our first absorbing area, d', shown shaded in Fig. 4-7. This area is mapped into itself, is bounded by arcs of critical curves, and is attractive (see Appendix 3.5 for the precise definition). In this case, the absorbing area is bounded by the arcs of the critical curves, L,  $L_1$ ,  $L_2$ ,  $L_3$ , and  $L_4$ . These bounding arcs are generated by successive iterations of the map, as we now describe.

1. We follow the paper BB.





Notice in Fig. 4-7, which shows the critical arcs in more detail, that  $L_{-1}$  and L are straight lines, crossing orthogonally in one point. Let  $a_0$  denote this point, (0, -0.5). Since it belongs to L, it has a unique preimage,  $a_{-1}$ , in  $L_{-1}$ . In this case  $a_{-1}$  is the origin (0, 0).

Keeping the interval  $a_{-1} a_0$  in mind, we now draw the successive images of the halfline of  $L_{-1}$  issuing from  $a_{-1}$  and containing  $a_0$ , that is, issuing downwards. The fourth image, lying within  $L_3$ , crosses the interval  $a_{-1} a_0$ , as shown in Fig. 4-7. At this event our constructive procedure ends, we have found an absorbing area, shown shaded in this figure. Further successive images of the segment converge on  $\Gamma$ , as shown in the blowup, Fig. 4-8. This procedure may be called *Procedure 1*. A related procedure is illustrated in the next stage.

As *b* continues to decrease,  $\Gamma$  expands further and eventually crosses  $L_{-1}$ .

### Stage 3: b = -0.6

In this case  $\Gamma$  crosses  $L_{-1}$  in the two points  $p_0$  and  $q_0$ . as shown in Fig. 4-9. The wavy shape of  $\Gamma$  is a consequence of this crossing, and may be understood as follows.

Apply the map to the configuration shown in Fig. 4-9. The points  $p_0$  and  $q_0$  are mapped into the points  $p_1$  and  $q_1$ , also on  $\Gamma$ . The straight line segment of  $L_{-1}$  between  $p_0$  and  $q_0$  is mapped into the straight line segment of L between  $p_1$  and  $q_1$ . Because the map folds the plane two-to-one while moving  $L_{-1}$  to L, the curved segment of  $\Gamma$  between  $p_0$  and  $q_0$  is carried into the curved segment of  $\Gamma$  between  $p_1$  and  $q_1$ , which is above the line L. The transversal crossings of  $\Gamma$  through the line  $L_{-1}$  are mapped into tangencies of  $\Gamma$  with L at the points  $p_1$  and  $q_1$ . These tangencies are shown clearly in the enlargement, Fig. 4-10. This is a universal property of curves crossing  $L_{-1}$ : All crossings are mapped into tangencies, or contacts, because the map folds the plane at  $L_{-1}$  and maps the two sides of  $L_{-1}$  onto just one side of L. Hence,  $\Gamma$  obtains a wave from the image of its segment which has crossed  $L_{-1}$ .

Another effect of these tangencies is that  $\Gamma$  is now tangent to the boundary of the absorbing area d' identified in Stage 2 above, as shown in Fig. 4-11. This absorbing area may be found by the following method, called *Procedure 2*.

Consider the straight line segment  $S_{-1}$  from  $a_{-1}$  to  $a_0$  in  $L_{-1}$  as above, and construct its successive images  $a_m a_{m+1}$  by repeated applications of the map, until the first crossing with  $L_{-1}$ , in the point  $b_0$ . See that the first image of  $S_{-1}$ ,  $S_0$ , is a straight line segment from  $a_0$  to  $a_1$  in L. The second image,  $S_1$ , is a wave from  $a_1$ to  $a_2$  in  $L_1$ , likewise  $S_2$  in  $L_2$ ,  $S_3$  in  $L_3$ , and  $S_4$  in  $L_4$ . But  $S_4$ crosses  $L_{-1}$ , and thus  $b_0$  is found. Let  $A_{-1}$  denote the straight line segment from  $b_0$  to  $a_0$  in  $L_{-1}$ . Then  $A_{-1}$  contains the segment  $S_{-1}$ constructed just above, and its image  $A_0$  is a straight line segment from  $b_1$  to  $a_1$  in L, containing  $S_0$ . Now the curve segments  $A_0$ ,  $S_1$ ,  $S_2$ ,  $S_3$ , B enclose the absorbing area d', where B is the curve segment from  $a_4 b_1$  within  $S_4$  and  $L_4$ , as shown in Fig. 4-12.







At this stage, we may see yet another absorbing area, which is annular in shape. That is, it has a hole. This is shown bounded by shaded curves in the enlargement of Fig. 4-13. Its boundary is constructed of successive images of the straight line segment  $A_{-1}$  from  $b_0$  to  $a_0$  in  $L_{-1}$ . The attractive invariant curve,  $\Gamma$ , is tangent to the external boundary of this annular absorbing area, as well as to its interior boundary.

As *b* decreases further, many bifurcations occur in the dynamics within these absorbing areas. Probably they have not all been discovered, but we show just a few events in the remaining figures of this chapter.

#### Stage 4: *b* = – 0.72

At this stage there is an attractive periodic cycle of period 11. The points of this cycle are labelled in iteration sequence in Fig. 4-14. This 11-cycle persists as b decreases further, through very many more bifurcations. The movie on the CD-ROM reveals an astonishing number of these, and many more have been observed, even in an interval of b values as narrow as 0.001.



#### ABSORBING AREAS

## Stage 5: b=-0.78

At this stage we find two attractors coexisting within the annular absorbing area, a 28-cycle and an 11-piece chaotic attractor. These are shown in Fig. 4-15. Near b = 0.798, there is an explosion to a chaotic attractor filling an annular absorbing area.

#### FIGURE 4-15.

The 11-cyclic chaotic attractor. The permutation of the pieces follows the numbering of Fig. 4-14.



# Stage 6: *b* = – 0.7989995

Fig. 4-16 shows the chaotic attractor, bounded by critical curves. Passing below b = -0.8, there are a number of additional bifurcations which have been studied on the research frontier. Some of them will be described later in this book. Approaching b = -1.0, further explosions are found.



## Stage 7: *b* = – 0.975

The densely dotted region of Fig. 4-17 is a large chaotic attractor, an annular chaotic area, d. The frontier, F, of its basin of attraction, includes the inset of the 2-cycle,  $\{Q_1, Q_2\}$ . The boundary of d is very near F. This figure shows that the critical curves (on the boundary of the former chaotic area) are about to touch (and then to cross) the inset of the 2-cycle.

The enlargement of Fig. 4-18 shows that, in addition, a contact of the frontier, F, with the boundary on L is about to occur. This contact bifurcation, described in Chapter 7, has the effect of destroying the chaotic attractor, or rather, of transforming it into a chaotic repellor. Now, almost all of the trajectories diverge to infinity, except for a Cantor set surviving inside the former chaotic area.

A rough idea of the basin of infinity,  $D(\infty)$ , is shown in Fig. 4-19 as a black area. The basin of infinity includes infinitely many holes in the former absorbing area, d', only a few of which are shown in this figure. The light area is the basin of attraction of the attractor d. An enlargement is shown in Fig, 4-20.



