
              
CHAPTER 4

ABSORBING AREAS

We begin with a brief introduction to the concept of absorption 
in one and two dimensions, and then study an exemplary bifurca-
tion sequence.

4.1 ABSORBTION CONCEPTS, 1D

We introduced in Chapter 2 the notions of critical points, which 
bound zones of multiplicity, and trapping intervals, which are 
mapped into themselves. These notions come together in the con-
cept of an absorbing interval. This is an interval in the domain of 
the map which is trapping, is bounded by critical points, and is 
super-attracting, which means that every point sufficiently close to 
the critical endpoints will jump into the absorbing interval after a 
finite number of applications of the map.

In the context of an iterated map of an interval, the interesting 
dynamics take place within absorbing intervals. The critical points 
of a one-dimensional map determine absorbing intervals, and are 
useful in characterizing some bifurcations, especially those called 
global bifurcations. Examples of global bifurcations occur in Chap-
ter 7.

4.2 ABSORBTION CONCEPTS, 2D

In two-dimensional iterations, we have a notion of absorbing 
area, generalizing the absorbing intervals of the one-dimensional 
case. The critical curves of a map of the plane play a role analogous 
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to that of the critical points of a one-dimensional map: they are use-
ful in determining absorbing areas. We will now illustrate the role 
of critical curves in determining these important areas in which the 
interesting dynamics occur.

In this chapter we will study the first family of quadratic maps 
defined in the Introduction. We will now use the map of this family 
determined by b = – 0.8 to illustrate the use of critical curves to 
determine an absorbing area. 

Our map has two fixed points, P and Q. The basic critical 
curve, L, is the locus of points with “coincident preimages,” that is, 
the set of points having nearby points with different numbers of 
preimages or rank 1 (see Appendix 3, especially A3.2 – A3.3, for 
definitions). The fundamental critical curve  is defined as the 
preimage of L. Thus, L is the image of  under the map. Simi-
larly, the derived critical curve  is the image of L, and so on. All 
of these are called critical curves, as described in Chapter 2.

Note for those who have studied vector calculus: In the context 
of a generic smooth map, the fundamental critical curve  will be 
a subset of the set of critical points in the Jacobian sense, points at 
which the Jacobian derivative of the map (a linear transformation) 
is degenerate (not a linear isomorphism), while the basic critical 
curve L is a subset of the set of critical values in the Jacobian sense. 
Inflection points are Jacobian critical points which do not belong to 

.

For this particular map,  is the vertical axis, x = 0, and L is a 
horizontal line, y = b = – 0.8. It will be convenient to choose a 
bounded interval in , , with endpoints , which is the ori-
gin (0, 0), and , which is the image of  under the map, the 
point (0, – 0.8). 

Note: The critical curve denoted by L in the text is denoted by 
 in the figures.

Figure 4-1 shows all these features and more. Note the points 
 and , and the segments of , L, ,..., . As the map 

moves  to L, and the point  to , L is moved to , and the 
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point  to a point  in . The transversal1 (and here, indeed, 
orthogonal) crossing of  and L at  is transformed into a tan-
gent contact of L and  at . Then this point is mapped to a 
tangency of  and  at , and so on. Note that the curve  
crosses  at the point , so  is tangent to L at the point , the 
image of , and so on. Similarly, the curve  crosses  at the 
point , so  is tangent to L at , the image of , and so on.

It is worthwhile to pause here and carefully study Figure 4-1. A 
point of transversal crossing of any curve, C, through  is 
mapped into a point of tangency of the image of that curve, f(C), 
with L. This is because of the folding which occurs as  is 
mapped onto L. Also, a point of tangency of a curve C to the curve 

 is mapped into a point of tangency of the image curve f(C) and 
L. 

1.  An intersection of two curves is said to be transversal if they cross cleanly through each 
other in a single point, and are not tangent to each other.
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FIGURE 4-1.

An absorbing area 
bounded by critical 
curves.
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The action of the map may be visualized as a nonlinear folding 
of the plane at the fundamental critical curve, , followed by a 
nonlinear rotation moving  to L around the point , and a non-
linear translation horizontally along L, so that  ends up at . 
The critical curves shown in Fig. 4-1 are a kind of skeleton of the 
map, as we shall see.

Our next goal is to use these critical curves to discover an 
absorbing area of the map. By definition (see Appendix A3.5), an 
absorbing area is a region of the plane such that: 

• it is mapped into (or onto) itself;

• its boundary is made up of segments of critical curves, or of 
limit points of an infinite sequence of critical curves; and

• it has a neighborhood every point of which eventually 
moves into the absorbing area.

As an example, note in Fig. 4-1 that the arcs  of L,  of 
,  of ,  of , and  of  bound a region d’, 
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FIGURE 4-2.

An annular absorb-
ing area bounded 
by critical curves.
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shown shaded in Fig. 4-1. This shaded region happens to be an 
absorbing area! First of all, it is invariant. For example, the segment 

 of  is on the boundary of the region, d’, but the image of 
this arc, , is internal to d’. This is clearly shown in Fig. 4-2, in 
which the image of  is indicated in . 

Also, d’ is absorbing: A point external to  is mapped into  
in a finite number of iterations, as shown in Fig. 4-3, and this is the 
case for all points sufficiently near to . 

Figure 4-2. also shows a shaded area, , bounded by the criti-
cal curve segments introduced in Fig. 4-1. It surrounds a hole, W, in 
which the fixed point Q is located. This is a smaller absorbing area, 
and is called an annular absorbing area for obvious reasons. Gen-
erally, absorbing areas may be topologically more complex, with 
many holes, and with many separate pieces.

Absorbing areas must contain attractors. One, d, is shown as a 
cloud of dots in Fig. 4-3. It is the attracting set of , and of the 
smaller absorbing area, , as well. 

Usually there are smaller and smaller absorbing areas around 
any attractor of the map. All these, by definition, are bounded by 
critical arcs. And as they get smaller and smaller, but always 
enclose the same attractor, it is to be expected that the attractor 
itself is bounded by critical arcs, or by limit points of infinite 
sequences of critical arcs. Figure 4-4. shows 25 iterates of two 
intervals of , the two pieces of . These iterates bound 
the attractor shown in Fig. 4-3 quite closely.

Another basic concept of dynamics is the basin of attraction of 
an attractor. In the method of critical curves, we usually determine 
an absorbing area by the method illustrated above, and thus the 
attractor within it, and then determine the basin of attraction of the 
absorbing area. In Fig. 4-5 the basin of attraction, D( ), is shown 
as the white region. Its boundary is made up of the repelling (nodal) 
fixed point, P, the saddle 2-cycle { , }, and its insets.1 The 
points of the gray region go off to infinity. That is, their trajectories 

1.  By inset of P we mean the set of points attracted to P, also called the stable set of P.
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The attractor within 
the annular absorb-
ing area.
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Critical curves con-
verging to the 
boundary of the 
attractor.
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are unbounded. We call this set the basin of infinity, D( ). The 
white area D( ) (excluding the fixed point Q and its rank 1 preim-
age  in ) is the basin of the attractor d.
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FIGURE 4-5.

The attractor in its 
basin.
ABSORBING AREAS 47



4.3 EXEMPLARY BIFURCATION SEQUENCE

In this first exemplary bifurcation sequence, we use the first 
family with a = 0.7, and decrease b from – 0.4 to – 1.0, in seven 
stages.1 For these values of b, our map always has two fixed points, 
P and Q, given by:

P: , 

Q: , 

where . Also, there is a 2-cycle, { , }.

Stage 1: b = – 0.4 

Here, the point Q, at about (– 0.5, – 0.15), is an attractive fixed 
point. As b decreases, a Neimark-Hopf bifurcation occurs. The 
fixed point Q becomes a repellor and the curve  appears as an 
attractive invariant cycle,  (a closed curve mapped onto itself) that 
gradually increases in size as b continues to decrease.

Stage 2: b = – 0.5 

In Fig. 4-6, we see the point repellor Q within the attractive 
cycle , and surrounding that, our first absorbing area, , shown 
shaded in Fig. 4-7. This area is mapped into itself, is bounded by 
arcs of critical curves, and is attractive (see Appendix 3.5 for the 
precise definition). In this case, the absorbing area is bounded by 
the arcs of the critical curves, L, , , , and . These bound-
ing arcs are generated by successive iterations of the map, as we 
now describe.

1.  We follow the paper BB.
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FIGURE 4-7.
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Notice in Fig. 4-7, which shows the critical arcs in more detail, 
that  and L are straight lines, crossing orthogonally in one point. 
Let  denote this point, (0, – 0.5). Since it belongs to L, it has a 
unique preimage, , in . In this case  is the origin (0, 0).

Keeping the interval  in mind, we now draw the succes-
sive images of the halfline of  issuing from  and containing 

, that is, issuing downwards. The fourth image, lying within , 
crosses the interval , as shown in Fig. 4-7. At this event our 
constructive procedure ends, we have found an absorbing area, 
shown shaded in this figure. Further successive images of the seg-
ment converge on , as shown in the blowup, Fig. 4-8. This 
procedure may be called Procedure 1. A related procedure is illus-
trated in the next stage.

As b continues to decrease,  expands further and eventually 
crosses .
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FIGURE 4-8.
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Stage 3: b = – 0.6 

In this case  crosses  in the two points  and . as 
shown in Fig. 4-9. The wavy shape of  is a consequence of this 
crossing, and may be understood as follows. 

Apply the map to the configuration shown in Fig. 4-9. The 
points  and  are mapped into the points  and , also on . 
The straight line segment of  between  and  is mapped into 
the straight line segment of L between  and . Because the map 
folds the plane two-to-one while moving  to L, the curved seg-
ment of  between  and  is carried into the curved segment of 

 between  and , which is above the line L. The transversal 
crossings of  through the line  are mapped into tangencies of 

 with L at the points  and . These tangencies are shown 
clearly in the enlargement, Fig. 4-10. This is a universal property of 
curves crossing : All crossings are mapped into tangencies, or 
contacts, because the map folds the plane at  and maps the two 
sides of  onto just one side of L. Hence,  obtains a wave from 
the image of its segment which has crossed . 

Another effect of these tangencies is that  is now tangent to 
the boundary of the absorbing area  identified in Stage 2 above, 
as shown in Fig. 4-11. This absorbing area may be found by the fol-
lowing method, called Procedure 2.

Consider the straight line segment  from  to  in  as 
above, and construct its successive images  by repeated 
applications of the map, until the first crossing with , in the 
point . See that the first image of , , is a straight line seg-
ment from  to  in L. The second image, , is a wave from  
to  in , likewise  in ,  in , and  in . But  
crosses , and thus  is found. Let  denote the straight line 
segment from  to  in . Then  contains the segment  
constructed just above, and its image  is a straight line segment 
from  to  in L, containing . Now the curve segments , , 

, , B enclose the absorbing area d’, where B is the curve seg-
ment from  within  and , as shown in Fig. 4-12. 
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At this stage, we may see yet another absorbing area, which is 
annular in shape. That is, it has a hole. This is shown bounded by 
shaded curves in the enlargement of Fig. 4-13. Its boundary is con-
structed of successive images of the straight line segment  from 

 to  in . The attractive invariant curve, , is tangent to the 
external boundary of this annular absorbing area, as well as to its 
interior boundary.

As b decreases further, many bifurcations occur in the dynamics 
within these absorbing areas. Probably they have not all been dis-
covered, but we show just a few events in the remaining figures of 
this chapter.

A 1–
b0 a0 L 1– Γ
FIGURE 4-13.
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Stage 4: b = – 0.72 

At this stage there is an attractive periodic cycle of period 11. 
The points of this cycle are labelled in iteration sequence in Fig. 4-
14. This 11-cycle persists as b decreases further, through very many 
more bifurcations. The movie on the CD-ROM reveals an astonish-
ing number of these, and many more have been observed, even in 
an interval of b values as narrow as 0.001.
11
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4 1

a=0.7    b=-0.72

FIGURE 4-14.

The attractive 11-
cycle. Note the per-
mutation sequence 
indicated by the 
numbers.
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numbering of Fig. 
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Stage 5: b=–0.78

At this stage we find two attractors coexisting within the 
annular absorbing area, a 28-cycle and an 11-piece chaotic 
attractor. These are shown in Fig. 4-15. Near b = 0.798, there is 
an explosion to a chaotic attractor filling an annular absorbing 
area.
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Stage 6: b = – 0.7989995 

Fig. 4-16 shows the chaotic attractor, bounded by critical 
curves. Passing below b = – 0.8, there are a number of additional 
bifurcations which have been studied on the research frontier. Some 
of them will be described later in this book. Approaching b = – 1.0, 
further explosions are found.
a=0.7    b=-0.7989995
FIGURE 4-16.
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Stage 7: b = – 0.975 

The densely dotted region of Fig. 4-17 is a large chaotic attrac-
tor, an annular chaotic area, d. The frontier, F, of its basin of 
attraction, includes the inset of the 2-cycle, { , }. The bound-
ary of d is very near F. This figure shows that the critical curves (on 
the boundary of the former chaotic area) are about to touch (and 
then to cross) the inset of the 2-cycle. 

The enlargement of Fig. 4-18 shows that, in addition, a contact 
of the frontier, F, with the boundary on L is about to occur. This 
contact bifurcation, described in Chapter 7, has the effect of 
destroying the chaotic attractor, or rather, of transforming it into a 
chaotic repellor. Now, almost all of the trajectories diverge to infin-
ity, except for a Cantor set surviving inside the former chaotic area.

A rough idea of the basin of infinity, D( ), is shown in Fig. 4-
19 as a black area. The basin of infinity includes infinitely many 
holes in the former absorbing area, d’, only a few of which are 
shown in this figure. The light area is the basin of attraction of the 
attractor d. An enlargement is shown in Fig, 4-20.
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FIGURE 4-18.
ABSORBING AREAS59



a=0.7    b=-0.975

FIGURE 4-19.

FIGURE 4-20.
60 ABSORBING AREAS


	CHAPTER 4
	ABSORBING AREAS
	4.1 ABSORBTION CONCEPTS, 1D
	4.2 ABSORBTION CONCEPTS, 2D
	4.3 EXEMPLARY BIFURCATION SEQUENCE
	Stage 1: b = – 0.4
	Stage 2: b = – 0.5
	Stage 3: b = – 0.6
	Stage 4: b = – 0.72
	Stage 5: b=–0.78
	Stage 6: b = – 0.7989995
	Stage 7: b = – 0.975
	FIGURE 4-1.�
	FIGURE 4-2.�
	FIGURE 4-3.�
	FIGURE 4-4.�
	FIGURE 4-5.�
	FIGURE 4-6.�
	FIGURE 4-7.�
	FIGURE 4-8.�
	FIGURE 4-9.�
	FIGURE 4-10.�
	FIGURE 4-11.�
	FIGURE 4-12.�
	FIGURE 4-13.�
	FIGURE 4-14.�
	FIGURE 4-15.�
	FIGURE 4-16.�
	FIGURE 4-17.�
	FIGURE 4-18.�
	FIGURE 4-19.�
	FIGURE 4-20.�



