CHAPTER 7

CHAOTIC CONTACT
BIFURCATIONS

Chaotic contact bifurcations involve a chaotic attractor. This is
the pinnacle of our subject. Here we proceed with a 1D introduc-
tion, and a 2D introduction, before analyzing the exemplary
bifurcation sequence.

1.1 BIFURCATIONS IN ONE DIMENSION

Recall from Chapter 3 that the basic critical curve L (as defined
in 3.2) belongs to the frontier of zones having different numbers of
preimages, for example, between Z, and Z, . These concepts were
introduced in the one-dimensional case in 2.2.

We now turn to another context, the chaotic contact bifurcation,
or CCB. Critical points are fundamental to an understanding of
these global events, and this understanding will be very useful when
we come to consider CCBs in the two-dimensional case.

In one-dimensional iterations, the transition to chaos (a bifur-
cation sequence in which a chaotic attractor is created out of the
blue sky, or a periodic attractor becomes chaotic) has been a pri-
mary concern since the pioneering works of Myrberg in 1958 (see
Appendices 5 and 6.) The role of the critical points in these tran-
sitions has been explored by Mira since 1975. His analysis of the
box-within-a-box bifurcation structure is described in M1. The
connection between bifurcations due to the critical points and the
homoclinic bifurcations of the repelling cycles has been pre-
sented in (Gardini, 1994). (Homoclinic points were discussed in
Chapter 5.)
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This latter is the subject of this chapter. We are going to illus-
trate two kinds of CCB. These examples are also homoclinic
bifurcations. Both concern a chaotic attractor having several pieces
— intervals in the one-dimensional case — which are permuted
cyclically by the map. These are called cyclical chaotic attractors.

Warning: We use the term chaotic attractor, loosely, for a situ-
ation revealed experimentally. We can never be sure that a trajectory
which appears chaotic is a true chaotic attractor, or just a very long
chaotic transient.

In a CCB of the first kind a cyclical chaotic attractor explodes
into a single, larger chaotic attractor. In a CCB of the second kind, a
2k-cyclic chaotic attractor is transformed into a k-cyclic chaotic
attractor as pieces merge pairwise.

Our examples will all occur in the quadratic family of maps of
the real line studied by Myrberg, f(x) = x2—b. We will discuss
the dynamics as b increases in the interval [- 2, 2]. We begin with b
= 1.0 and increase to about b = 1.8, in nine stages.

The graph of a Myrberg map is a parabola in standard position,
except for the vertical displacement by — b. As the bifurcation
parameter b increases, the parabola descends. As described in
Chapter 2, two fixed points appear in a fold bifurcation as b
increases through the value 0.25. Generally, a fold bifurcation is the
opening of a box of the first kind, in the language of Mira. A box is
an interval in the one-dimensional space of the parameter, b.

Stage l: b=1.0

Figure 7-1 shows the main qualitative features of the function f.
The two fixed points are shown by the intersection of the graph of f
and the diagonal line. Although these points are really located in the
domain of the map (the horizontal axis in this figure), we show
them above the horizontal axis, on the graph of the function or on
the diagonal, which are the same in this case. This convention is
very useful, and will be followed throughout this chapter.

The critical point (value of x at which f(x) achieves its mini-
mum) is the origin, 0, and is denoted c_, here. The critical value
f(c_,) is indicated by c. Of course, this is just the critical value — b.
Again, both are shown on the diagonal, following our convention.
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The fixed point Q is repelling, while the fixed point P, although
initially attracting when created at b = 0.25, underwent a period-
doubling (flip) bifurcation when b increased past approximately
0.7495, as described in Chapter 2. So at the current value, 1.0, Pis a
repellor. This flip is the first in the Myrberg sequence, well studied
in the works of Feigenbaum. In the box-within-a-box language of
Mira, this flip is the opening of the first box of the second kind, an
small interval of the b space, within a box of the first kind, a larger
interval. Each box of the first kind includes a related box of the sec-
ond kind.

N

FIGURE 7-1.
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Stage 2: b=1.75

A k-periodic point of the map fis a fixed point of the map f¥ (f
iterated k times). For example, to find a 3-cycle of f, we look for
three related intersections of f~ with the diagonal. In Figure 7-2,
we see a fold bifurcation of f3 occurring. The fixed points, P, Q, of
fare still fixed points of f3, so they appear here as intersections, as
marked. But there are three new contacts as well, labelled o; = Bl s
o, = B,,and a; = B;.These comprise a 3-cycle of £, as well as
fixed points of f3.A box of the first kind opens here.

FIGURE 7-2. - 0
b=175
f3 a3 = B3
l_,
ol a;= By
P
-1t
o =P
272 1 0 i 2
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Stage 3: b=1.76

Just after the fold bifurcation, there are two 3-cycles, one {0, ,
o, , 03 } attracting, the other {B,, B, , B} repelling, as described

in Chapter 2 and shown in Figure 7-3.

N

FIGURE 7-3.
b=1.16
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Stage 4: b= 1.771

At this value of b, an attracting 6-cycle has appeared recently,
when the formerly attracting 3-cycle of the preceding stage flipped
and became a repelling 3-cycle, opening the related box of the sec-
ond kind. Figure 7-4 shows the attractive 6-cycle, both on the graph
of fand on the diagonal.

Figure 7-5 shows a small rectangular neighborhood of the repel-
ling 3-periodic point o5, with two 6-periodic points nearby, both
attracting. They are all shown on the crossing of the diagonal with
the graph of £, as they are fixed points of this function.

FIGURE 7-4.
b=1771

The six points of the 6-
cycle (two points at the 1
left are very close) and
the fixed point, P,

shown on the diagonal.
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Stage 5: b= 1.78I

Figure 7-6 shows that as b increases a bit more, the orbit shown
seems to be chaotic in six disjoint intervals, rather than cyclic. Fig-
ure 7-7 is an enlargement of the pair of chaotic intervals in the
center of Figure 7-6, which nearly abut the 3-periodic repellor, o, .
This enlargement shows evidence that a attractor fills the six inter-
vals, and thus is chaotic (not cyclic).

CHAOTIC CONTACT BIFURCATIONS 123



FIGURE 7-6.
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Stage 6: b= 1.7822

This is the moment of contact bifurcation. A critical point has
moved toward, and now makes contact with, the point o5 of the
repelling 3-cycle {a,; , o, , 0.3 }. In this stage we see the closure of
the box of the second kind which opened with the flip bifurcation of
the o cycle, discussed in Stage 4.

Figure 7-8 shows a blowup of the same piece of f3 seen in Fig-
ure 7-7. Here we see a trajectory of the basic critical point c_,
through three iterations of f3 (that is, C_j, €3, C5, Cg) until cg
falls on o5 . Also, four preimages of c_, are shown, indicating that
a backward sequence of critical points, ¢ 4> C_7s C_jgre
approaches o asymptotically. The trajectory is shown in the
Koenig-Lemeray style explained in Chapter 2.

With this contact there appear for the first time orbits
homoclinic to o, . These are points with orbits which are initially
repelled by, but later jump back onto, o5 . A point like o, that has a
homoclinic trajectory is called a snap-back repellor (SBR). In this
figure we show three points c¢_, , ¢, , and ¢, which are homoclinic
to a5 . They lie on opposite sides of the SBR «; .

Before this bifurcation, the attractor occupied six chaotic inter-
vals, permuted cyclically by the map f (and this is therefore called a
6-cyclic chaotic attractor). After this bifurcation, as we will see in
the next figures, the attractor occupies only three (larger) chaotic
intervals, permuted cyclically by the map f (a 3-cyclical chaotic
attractor). Thus, we have at this instant an example of a CCB of the
second kind, as described at the beginning of this chapter. The six
intervals have joined pairwise into three larger intervals.

We may also see, in Figure 7-8, an example of an absorbing
interval. This is an interval bounded by critical points, which is
mapped into itself and which is absorbing in the sense that all
points sufficiently near will jump into the interval in a finite number
of iterations. In this figure, the interval [cs, ¢, ]is absorbing. It con-
tains a chaotic attractor of f3. Also, it is invariant under the map
f3, that is, it is mapped exactly onto itself. On the other hand,
under the map f, the three intervals — [cs, ¢, ] and its two images
under the map, f — comprise an absorbing set which contains the 3-
cyclic chaotic attractor. We also call these three component inter-
vals of the absorbing set, collectively, absorbing intervals.
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Note: The intervals are not individually mapped into themselves
by f, but only by f3. Their union is mapped into itself by f. Note
also that before this homoclinic bifurcation, which is a CCB of the
second kind, critical points define the boundary of 2-3-cyclic!
absorbing intervals, which include the 2-3-cyclic attractor. The
points o; of the repelling 2-3-cycle, together with their preimages
of all ranks, define the boundary of the basin of attraction of the
2:3-cyclic absorbing intervals, and each o, separates two immedi-
ate basins. These concepts have been introduced in Chapter 2.
When this CCB of the repelling 3-cycle occurs, the map has 6-
cyclic chaotic intervals, not distinct, as well as 3-cyclic chaotic
intervals. That is, the map f© has six invariant chaotic intervals, not
disjoint, and the map f3 has three disjoint invariant chaotic
intervals.

The situation is similar for any CB of the second kind, in which
a 2k-cyclic chaotic attractor is transformed into a k-cyclic chaotic
attractor: the closure of a box of the second kind is characterized by
the appearance (for the first time) of homoclinic orbits of the k-
cycle, a, on both sides of the points o; of the cycle, and the 2k
absorbing intervals merge into k absorbing intervals. This occurs
without an abrupt increase in the size of the absorbing set, such as
we will see in the next example.

So far we have introduced most of the main ideas pertaining to
CCBs of the second kind, which closes a box of the second kind.
Next we look at a CCB of the first kind, which closes a box of the
first kind opened in Stage 2 above.

1. This means 6-cyclic, and recalls that 6 = 2.3,
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Stage 7: b=1.79032

As in the preceding CCB of the second kind, this CCB of the
first kind is characterized by the merging of critical points into a -
cycle, which was born repelling at the time of the opening of the
box of the first kind. In this case, the affected cycle is the 3-cyclic
attractor, 3, born in Stage 2 above.

Figure 7-9 shows the 3-cyclic chaotic attractor, in the context of
the graph of f3, with the points o5 and B; on the diagonal, at the
moment of a CB of the first kind. Figure 7-10 is an enlargement of
the region containing B; and o in Figure 7-9. Here we can see
that a critical point, c5 , has merged onto B, , and is the terminus of
a homoclinic orbit of critical points.
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Stage 8: b= 1.7905

Figure 7-11 shows that after a CCB of the first kind, the chaotic
attractor has exploded into a single interval. Figure 7-12 is a view of
the chaotic attractor alone, in the same frame. This is significantly
different from the case of the CCB of the second kind described
above. To explain this difference, consider again the fold bifurca-
tion of Stage 2, in which the o and B 3-cycles were created, and in
which the box of the first kind opened. Looking back at Figure 7-2,
we can see that, at the moment of fold bifurcation, the points of the
newborn cycle are attracting from one side (slope steeper than 1)
while repelling to the other (slope less steep than 1). (This may be
verified by drawing some cobwebs.) Still at the moment of this
bifurcation, the new cycle has homoclinic orbits on the repelling
side.

FIGURE 7-11.
b= 1.7905
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FIGURE 7-12.
b=1.7905

Stage 2: (again): b= 1.75

Figure 7-13 shows an enlarged view of the region near 3, = o,
at the moment that point is created in the fold bifurcation. This
point is repelling to the left, and two homoclinic orbits are shown.
There are infinitely many such orbits. This point is homoclinic on
one side only. Homoclinic orbits are also shown in Figure 7-14,
after the fold bifurcation.
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Stage 3: (again):b = 1.76

Looking back at Stage 3 in Figure 7-14, we see that B, still has
infinitely many homoclinic orbits on the left, and none on the right.
This means that the basin of attraction of the attractive 3-cycle, o,
or of the cyclic absorbing intervals existing before the CCB of the
first kind, is made up of the immediate basins together with all of
their preimages, which have a chaotic, or fractal, structure. How-
ever, once a point of a trajectory enters the immediate basin
bounded by B, and its preimage, (B3)_; » its images will enter the
absorbing interval and never escape, as may be seen in Figure 7-8.

Summarizing the CCB of the first kind of Stage 6, the chaotic
interval has a contact with B, and homoclinic points appear also
on the other side of that point, as shown in Figure 7-10.
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FIGURE 7-14.
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Stage 9: b = 1.79035
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Figure 7-15 shows that after a CCB of the first kind (this does
not occur in a CCB of the second kind) the generic trajectory of a
point of the former immediate basin, 15, (B5)-1[, will escape
from that open interval, covering the whole absorbing interval, ]c,
¢, [. In particular, soon after this CCB, the generic trajectory spends
more time in the former chaotic intervals, but some rare moments

outside them.
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FIGURE 7-15.
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7.2 BIFURCATIONS IN TWO DIMENSIONS

We now introduce chaotic contact bifurcations (CCBs), for
maps of the plane. The introduction to CCBs in 1D of 7.1 will have
provided a preparation for this material. The fine structure of CCBs
may be easier to visualize in 2D than in 1D.

Context

Our context is a one-parameter family of maps of the plane into
itself. Each map of the family is the generator of a discrete dynami-
cal system based on the iterations of the map. As the parameter is
changed, the dynamics (attractors, basins, and so on) of the map
change. Special changes are known as bifurcations.

In this chapter we consider maps having a chaotic attractor.
CCBs involve qualitative changes, or even destabilization, of the
shape of a chaotic attractor. This has been a subject on the frontier
of discrete dynamical systems theory since GM2 in 1978.
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What is a CB?

A contact bifurcation involves a contact between the boundary
of a chaotic attractor and the boundary of its basin of attraction.
Both of the boundaries involved in the contact may be fractal. The
underlying causes of fractal (rough) basin boundaries comprise a
main theme of dynamical systems theory, and several mechanisms
may be seen in the exemplary bifurcation sequences of this book.

In one of these exemplary sequences, we will explain, step-by-
step, a bifurcation sequence taken from GAREF. In this sequence, the
CCBs correspond to homoclinic bifurcations of repelling cycles
(nodes, foci, or saddles) of the map. In preparation for the detailed
explanations of those examples, we will introduce here some of the
basic concepts, and some of the technical jargon, of CCB theory.

Basic concepts and notations

This is an informal introduction; precise definitions may be
found in Appendices 2 and 3. A subset of the plane is invariant
under the map if the subset is mapped exactly onto itself. A chaotic
area is an invariant subset (larger than a finite set) that exhibits cha-
otic dynamics, that is, a typical trajectory fills the area densely. A
subset of the plane, A, is attracting if it has a neighborhood (an
open set, U, containing A) every point of which tends asymptoti-
cally to A, or arrives there in a finite number of iterations. In this
case, the basin or basin of attraction of A, denoted D(A) or D, is the
set of all points which eventually enter A; this basin may be found
by taking the union of all preimages of the neighborhood U. The
immediate basin of A, denoted D, (A) or D, is the largest con-
nected part of D containing A. A chaotic attractor is a chaotic area
which is attracting.

Consider now a map T with a chaotic attractor, d, its basin D,
and the boundary of this basin, F = bd(D), also called the frontier
of d.

The attractor is called a k-cyclic chaotic attractor, where k is a
positive integer, when d has k connected components which are per-
muted cyclically by the map T. Let T denote the map T applied k
times in succession. Then each component of the attractor d of T is
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individually an attractor of T*. In this case, the basin D is also
k-cyclic. That is, it has k connected components, each being an
image of the immediate basin, which are permuted cyclically by T.
Each basin component, and each attractor component, are invariant
under the map T* . This applies to F as well.

What is a CCB?

A chaotic contact bifurcation occurs in this context when, as
the parameter of the family is varied, the chaotic attractor d moves
toward its basin boundary, the frontier F, and eventually makes con-
tact when the attractor boundary, bd(d), touches F. This frontier
may be either a fractal, or smooth but the limit of an infinity of
folded loops compressed by the action of the map. Also, the frontier
contains repelling cycles, either saddles or repellors of nodal or
focal type.

If d is k-cyclic, k > 1, we use T* instead of T to visualize this
event more easily. Let d;, be one of the components of d. Then the
attractor of T*, dy, will drift toward its basin boundary F, =
bd(d,).

Classification of CCB types

A point P of F is an isolated point of F if it has a neighborhood,
every point of which is not in F.

A snap-back repellor (SBR) is a repelling node or focus, P,
which has a homoclinic point, that is, a point Q which has preim-
ages approaching asymptotically to P, and also has an image which
is P. That is, the homoclinic point Q comes from P in the infinite
past, and arrives at P in the finite future. Hence, the orbit of Q is
homoclinic, or “same-tending”, in the sense of tending to the same
point, P, in the past and in the future.

We classify CCBs as type I or type II. Those of type II are fur-
ther divided into three kinds: first kind, second kind, and final.

In a CCB of type I, the contact of bd(d) and F is first made at a
fixed point, P, which is an isolated point of F until the moment of
contact. Usually, this contact point becomes an SBR, in which case
the CCB is called a homoclinic bifurcation. At the instant of a CCB
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of type I, the boundary touches an SBR, and the homoclinic orbits
make their first appearance at P at the moment of contact. In this
case, the point P is no longer within F at the moment of contact.

In a CCB of type 11, the contact of bd(d) and F occurs at points
which were not isolated points of F before the moment of contact.
These are also usually homoclinic bifurcations.

The three kinds of CCB of type |l

A CCB of type Il is of the first kind if it causes a sudden change
in the shape of a chaotic attractor, such as a sudden change in size.

A CCB of type I is of the second kind if it causes a qualitative
change in the shape of a chaotic attractor, such as the joining of a
finite number of chaotic sets into a smaller number of chaotic sets,
which continue to attract after the bifurcation.

A CCB of type Il is a final bifurcation if it destroys the attractor,
that is, it changes from a chaotic attractor to a chaotic repellor.

If F, is a limit set of components of basin boundaries of other
bounded attractors (that is, consists of limit points of sequences of
points belonging to basin boundaries) then a CCB of type II of the
first kind may occur. If the contact points belong to the immediate
basin of another bounded attractor, then a CCB of type II of the sec-
ond kind may occur.

The simplest case in which a CCB of type II is a final bifurca-
tion occurs when the contact points are limit points of the basin of
infinity (the set D(e) of points having unbounded trajectories).
However, other similar interactions may give rise to this kind of
bifurcation, in which D(e<) is not involved, but another basin, D’,
plays its role.

Next, we give examples, with abundant graphics, of CCBs of
type II of the first and second kinds. Other examples may be found
in G1, GARF, and FMG. Several examples of final bifurcations
have already been described — see the bifurcation at the last stage
described in each of the preceding three chapters.
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7.3 EXEMPLARY BIFURCATION SEQUENCE

We have introduced the basic concepts and notations of CCBs
in 1D in Section 7.1, and in 2D in Section 7.2. Here, we continue
the 2D discussion with an exemplary bifurcation sequence, showing
CCBs of type II of the first and second kinds.

We use a quadratic family of maps of the unit square, [0, 1] x
[0, 1], called the double logistic family; this is EQ2 in 1.5, for more
details, see GARF and FMG. As the bifurcation parameter
increases from 0.6 to 1.0, this family exhibits features of a family of
one-dimensional quadratic maps — the logistic family, equivalent
to the Myrberg family of Section 7.1 — on the diagonal, the set A
of points of the form (x, y) with x = y. This set is mapped into itself
by every map of the double logistic family. Another special feature
of these maps is a symmetry with respect to reflection through the
diagonal. Also, each map has four fixed points: the points (0, 0) and
(0.75, 0.75) on the diagonal, and two other points, Pf and P;_‘ s
which are mirror reflections through the diagonal.

Skipping over some simple bifurcations for low values of the
bifurcation parameter b, we come to a type II CCB of the second
kind between 0.64218 and 0.64219.

Stage I: b=0.641

Just before the bifurcation, the double logistic map has a 14-
cyclic chaotic attractor (the dark curves in Figure 7-16), which
belongs to an annular absorbing area (shown in white in Figure 7-
16).

In the enlargement of Figure 7-17, we see a 7-periodic point of
saddle type, V, between two nearby chaotic areas, shown with its
local stable curve or inset, W, and its unstable curve or outset,
W . To fix these features, we should think in terms of the map T14,
The inset of V is the frontier between the basins of the two chaotic
attractors. Note that the two rays of the outset of V are attracted to
the two chaotic attractors, and approximate their shapes.
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FIGURE 7-16. b=0641

The basin of infinity in
gray; the attractor is
black.

b =0.641

FIGURE 7-17.
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Stage 2: b=0.64218

Just an instant before the bifurcation, there is almost contact
between the two chaotic areas and the frontier, the inset of V, as
shown in Figure 7-18. Figure 7-19 is an enlargement of the small
square in Figure 7-18. It shows how closely the chaotic attractors
have approached to the frontier.

FIGURE 7-18. b=0.64218

~
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FIGURE 7-19. b =0.64218

Stage 3: b=0.64219

Just an instant after the bifurcation, the chaotic attractors have
passed through the inset of V, as shown in Figure 7-20. Because the
outsets of V approximate these two attractors, which cross trans-
versally through the inset of V, we may conclude that V is a trans-
versally homoclinic saddle cycle: its outset has infinitely many
transversal intersections with its inset. In fact, V has experienced a
transition from nonhomoclinic to homoclinic state, exactly at our
contact bifurcation.
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FIGURE 7-20. b =0.64219

Stage 4: b=0.643

Later on, as shown in Figure 7-21, we see that the 14-cyclic
chaotic attractor has become a 7-cyclic chaotic attractor, through
the merging of pieces in pairs. This is characteristic of the CCB of
type II of the second kind.
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FIGURE 7-21.

Stage 5: b =0.6439200

This stage represents the situation just an instant before a type II
CCB of the first kind. In this event, the 7-cyclic chaotic attractor
will explode into a larger, annular, connected (that is, 1-cyclic) cha-
otic attractor, which will be seen clearly later at stage 7. Such an
explosion is characteristic of a type II CCB of the first kind.

In Figure 7-22, we see the complex dynamics just before this
explosion. The attractor is shown in black, and the seven compo-
nents of the basin of the 7-cyclic chaotic attractor are shown in 7
shades of grey, in Figure 7-22. (Please note: The seven components
of one basin of the map T are seven distinct basins of seven distinct
attractors of the map T7.)

Figure 7-23 is an enlargement of the rectangle indicated in Fig-
ure 7-22, showing the close approach of a chaotic attractor of 77 to
its basin boundary. There is a 21-cycle of T of saddle type, that is, a
3-cycle saddle of T7, belonging to the boundary of the immediate
basin. This basin is shown in the lightest shade of grey.
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FIGURE 7-22.

To each part of the
attractor (black) is
associated a corre-
sponding piece of the
basin (shades of gray.)
One piece of the fun-
damental critical curve
and two pieces of the
basic critical curve are
shown.

FIGURE 7-23.

Enlargement of the
small rectangle above.

b =0.64392
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Stage 6: b=0.6439248

Just after this contact bifurcation, the attractor has firmly
pierced its former frontier. Figure 7-24 is an enlargement near one
of the saddle points of the 21-cycle. This saddle lies on the former
basin boundary, which is the inset of the saddle, and the attractor
passes through this former frontier. Figure 7-25 is the same view,
without the basins. Here we clearly see that the saddle has become
homoclinic, as the unstable set crosses the inset of the saddle, and
the chaotic attractor crosses the former frontier.

FIGURE 7-24.

0.540 0.880
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FIGURE 7-25.

0.828 [~

0.822
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Stage 7: b =0.644

Still later, we see the outcome of this CCB of type II of the first
kind. Figure 7-26 shows the large, connected, annular chaotic
attractor. It overlays the area formerly occupied by the seven pieces
of the 7-cyclic chaotic attractor.

This large attractor persists until b reaches 0.702. Of course, it
has a mirror image on the other side of the diagonal, due to symme-
try, so there are actually two large chaotic attractors. The two
corresponding immediate basins are separated by a segment of the
diagonal, which segment consists of the inset of a 2-periodic cycle,
{Q,, 0, }, which exists on the diagonal along with the fixed points
of the map.
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FIGURE 7-26.

Stage 8: b =0.7020

A change suddenly occurs at this stage. The large annular
chaotic attractors have expanded, and now make contact simulta-
neously with the diagonal. Figure 7-27 shows the points Q,, Q,,
on the diagonal, A, and the contact just established with one of the
large attractors. This is a CCB of type II of the second kind. The
two attractors are becoming one, which will be symmetric, of
course. At the bifurcation, the periodic points, @, , Q,, are critical;
that is, they belong to critical curves.

Stage 9: b=0.7025

Just after the CCB, the outset of the 2-cycle, {Q,, Q, } crosses
the inset of the 2-cycle, which is in A, as shown in Figure 7-28.

Thus, this 2-periodic saddle has become homoclinic during the
CCB.
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FIGURE 7-27.

b =0.7025

FIGURE 7-28. 1.0
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Stage 10: b =0.7030

Figure 7-29 gives a global view of the new one-piece chaotic
attractor. Note the three holes, labelled H(S*), H(P,*), and
H(P,*), which are bounded by critical curves. These surround the
fixed repelling node on the diagonal, $*, and the symmetric repel-
ling foci, P, * and P, *. These three holes will disappear at CCBs
of type 1, which are the first homoclinic bifurcations.

Stage I1: b=0.714

At this CCB, the hole H(S*) disappears. Figure 7-30 shows the
critical curves at this CCB. Figure 7-31 shows the attractor at the
same moment.

FIGURE 7-29.

1.000

0.050
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Stage 12: b=0.7375

At this CCB, the holes H(P, *) and H(P, *) disappear. Figure
7-32 shows the critical curves at this CCB, Figure 7-33 shows the
attractor, now simply connected, at the same moment.

FIGURE 7-30.

FIGURE 7-31. b=0.714
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As b continues to increase, several other CCBs of type I or type
II may be observed, in which the sudden change of shape of a cha-
otic attractor is similar to the changes already seen in this sequence.
Watch for them in the movie of the full bifurcation sequence
provided on the CD-ROM which accompanies this book. We espe-
cially recommend b =0.88, b = 0.88498, and b = 0.88499.

FIGURE 7-32. b =0.7375

b =0.7375

FIGURE 7-33.
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