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FOREWORD TO THE PROJECT

You are looking at the outcome of a three-year project, a unique
experiment in electronic publishing. For lack of a better word, we
call this apackage It has three intertwined componentfiaok a
CD-ROM and awebsite It is perhaps the first such multimedia
package devoted to an advanced branch of mathematics.

The book is the primary component, and it is extensively illus-
trated with monochrome computer graphics. The CD-ROM is
devoted mainly to 12 computer graphic animations in color, which
animate and expand the graphics in the book. The user interface to
the CD-ROM is made in the style, and with the technology, of the
World Wide Web. Therefore, it integrates seamlessly with the web-
site devoted to the book and CD-ROM, which is maintained at the
Visual Math Institute. This website also connects outward with the
resources of the World Wide Web.

The motivation for this unique package is the conviction that
this style of electronic publication is the ideal medium for mathe-
matical communication, and especially, for the branch of mathe-
matics known as dynamical systems theory, including our subject:
noninvertible discrete chaos theory in two dimensions. The essence
of this communicative style is tlignapictechnique, in which a
drawing is developed stroke-by-stroke, along with a carefully coor-
dinated spoken commentary. This is the traditional method used by
most mathematicians, when speaking among themsé#&fisesi|
Math!

We will now introduce the three components separately.
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PREFACE TO THE BOOK

This book is a visual introduction to chaos and bifurcations in
noninvertible discrete dynamical systems in two dimensions, by the
method of critical curves.

Historical Background

Dynamical systems theory is a classical branch of mathematics
which began with Newton around 1665. It provides mathematical
models for systems which evolve in time according to a rule, origi-
nally expressed in analytical form as a system of ordinary differen-
tial equations. These models are cattedtinuous dynamical
systemsThey are also calldtbws, as the points of the system
evolve by flowing along continuous curves.

In the 1880s, Poincaré studied continuous dynamical systems in
connection with a prize competition on the stability of the solar sys-
tem. He found it convenient to replace the continuous flow of time
with a discrete analogue, in which time increases in regular, salta-
tory jumps. These systems are now catlestrete dynamical sys-
tems So, for over a century, dynamical systems have come in two
flavors: continuous and discrete. Discrete dynamical systems are
usually expressed as the iteration of a map (also called an endomor-
phism) of a space into itself. In these systems, points of the system
jump along dotted lines with a regular rhythm.

In the context of a discrete dynamical system, in which a given
map is iterated, that map mightibgertible (because of being one-
to-one and onto) aroninvertible(failing one or the other or both of
these conditions). So, discrete dynamical systems come in two
types, invertible and noninvertible. The invertible maps were intro-
duced by Poincaré, and have been extensively studied ever since.
The studies of noninvertible maps have been more sparse until
recently, when they became one of the most active areas on the
research frontier because of their extraordinary usefulness in appli-
cations.
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Chaos theorys a popular pseudonym for dynamical systems
theory. This new name became popular about 20 years ago, when
its applicability to chaotic systems in nature became widely known
through the advent of computer graphics. As there are two flavors
of dynamical systems, continuous and discrete, there are also two
chaos theories. The first to develop, in the work of Poincaré about a
century ago, was the theory of chaotic behavior in continuous sys-
tems. He also studied chaotic behavior in discrete dynamical sys-
tems generated by an invertible map.

Discrete chaos theory for noninvertible maps began some years
after Poincaré. Its development has been accelerated particularly
since the computer revolution, and today it is a young and active
field of study. The earliest development of the theory came in the
context of one-dimensional mapbkat is, the iteration of a real
function of a single real variable. One of the key tools in the one-
dimensional theory was the calculus of critical points, such as local
maxima and minima. Thisvo-dimensional contexs the current
research frontier, and, it is the subject of this book.

For two-dimensional noninvertible maps, tréical curveis a
natural extension of the classical notion of critical point for one-
dimensional noninvertible maps. The first introduction of the criti-
cal curve, as a mathematical tool for two-dimensional noninvertible
maps, appeared in papers by Gumowski & Mira in the 1960s (see
the bibliographies at the end of the book for references.)

The importance of our subject

Chaos theory generally is crucially important in all the sciences
(physical, biological, and social) because of its unique capability
for modeling those natural systems which behave chaotically. It is
for this reason that there is a chaos revolution now ongoing in the
sciences. For those systems which present continuous, evolving,
data (such as the solar system) — continuous chaos theory provides
models. And for those which present discrete data (such as econom-
ics) — discrete chaos theory provides models. One advantage of
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discrete dynamical models is the ease and speed of simulating the
models with digital computers, as compared with continuous

dynamical models. Discrete models are sometimes advantageous,
even in the context of natural systems presenting continuous data.

Uniqueness of this publication

The book component of this book/CD-ROM/Website package is
not a conventional text book, and yet its purpose is pedagogic. It
intends to provide any interested person having a minimal back-
ground in mathematics, but with a basic understanding of the lan-
guage of set-theory, to become an initiate in this new field. It is
unique in providing both an elementary and a visual approach to the
subject. While chaos theory is mathematically sophisticated, by
focusing on examples and visual representations — there are about
one hundred computer graphics in the book — and minimizing the
symbols and jargon of formal mathematics — they are relegated to
a set of appendices — the text provides the reader with an easy
entry into this important and powerful theory. The primary focus of
the package is the concepthafurcationfor a chaotic attractar
These are introduced in four exemplary bifurcation sequences, each
defined by a family of very simple noninvertible maps of the plane
into itself. Each family, the subject of an entire chapter in the book,
exhibits many bifurcations.

And as dynamics involves motion, computer graphic anima-
tions provide a particularly appropriate medium for communicating
dynamical concepts. The CD-ROM contains 12 animations which
bring life to the basic ideas of the theory, literally animating the still
images of the book. For each of the four map families there is one
long, fast movie which is a fast forward through the entire chapter,
as well as two “zooms” which expand a brief piece of the action
into a slow motion movie. The movies can be understood only by
reading along in the book while viewing the movie. The motion
controls of the movie players (in both the Windows and the Macin-
tosh environments) allow easy stop, play, fast-forward, reverse, and



slow-motion, by dragging a slider. This makes the CD-ROM ideal
for studying in conjunction with the book.

Intended audience

While many devotees of pure mathematics may enjoy this pack-
age for the novelty of its fresh ideas and the mathematical challenge
of a new subject, with most of its main problems unsolved, the
intended audience for this book is the large and heterogeneous
group of science students and working scientists who must, due to
the nature of their work, deal with the modeling and simulation of
data from complex dynamical systems of nature which are intrinsi-
cally discrete. This means, for example, applied scientists, engi-
neers, economists, ecologists, and students of these fields.

How to use the book

The book is divided in three parts, which are almost indepen-
dent, and which can be utilized in parallel. The first part provides
the simplest introduction to the basic concepts of discrete chaos
theory, with many drawings and examples. The second part is a
detailed analysis of computer experiments with four families of dis-
crete chaotic systems, with emphasis on the method of critical
curves, and the phenomena of bifurcation. The third part is a set of
appendices which provide more official definitions for readers hav-
ing a stronger background in abstract mathematics. Here, is also
found extensive historical material by Professor Mira, some made
available in English for the first time. It is proposed that the second
part be regarded as a “guided tour” through a very difficult terrain,
and each example studied repeatedly, with recourse as necessary
(using the index) to the first and third parts, and to the CD-ROM.
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PREFACE TO THE CD-ROM

The CD-ROM supplied in the back of the book is intended as an
enhancement to the book. Its main function is to animate the graph-
ics in chapters 4 through 7 with 12 movies. It also contains some
useful software. This companion CD-ROM may be regarded as a
“canned” piece of the World Wide Web. It has an index which may
be accessed by any WWW browser, like Netscape Navigator, or
Internet Explore. The CD also connects seamlessly with the Web, if
your computer has Internet access.

The movies

The movies for chapters 4, 5, 6, and 7 are computer graphic ani-
mations, created by extensive computations with ENDO, an X-Win-
dows software package for research on discrete dynamical systems
in two dimensions created by Ronald Joe Record. These movies
provide the best opportunity to understand the role of critical curves
in the bifurcations presented in these chapters.

Each of the four chapters — 4, 5, 6, and 7 — present an exem-
plary bifurcation sequence. This means that we are given a one-
parameter family of maps, and we carefully observe a chaotic
attractor as the parameter is varied. Certain special events called
bifurcations occur, perhaps very frequently, as the parameter is
changed. In each of these chapters, we have singled out just a few
of these special events for special attention, we call them “stages”.

For example, in Chapter 4, there are 12 stages. In the book,
monochrome computer graphics are included for each of these
stages, along with extensive commentary which tries to explain the
(very complicated) images.

In the movies, the stages are embedded in a very large number
of in-between images, which are then flashed on the screen like a
flip book. Thus, the still-frame black-and-white stage images of the
book are embedded in an apparently continuous, uniform, sequence
of color-coded images in the movies. The color code is a one-
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dimensional spectral scale from blue to red, and is shown at the
right side of the screen in all of the movies. In the square frames of
the movies, the color blue indicates a low relative density of trajec-
tory points in a given small square of the plane, while red indicates
a high density.

Additional CD-ROM content

Besides the twelve movies, each in two formats, the CD-ROM
also contains additional material: MAPLE and ENDO.

The 96 computer graphics in chapters 4 through 7 of the book
(with four exceptions) have been computed in the mathematical
programming language MAPLE by Scott Hotton. For the 92 images
that have been made by in this way, the complete programs (they
are plain text files) may be read directly from the CD-ROM. Read-
ing one of these files, with the help of a MAPLE programming
manual if needed, answers all possible questions about the figures
in the book: the size of the domain, the number of points, etc. In
addition, the programs are very easily modified and run in the
MAPLE environment, to do further research in chaos theory.

The ENDO program, written by Ron Record, was used by him
to make all of the frames of the movies on the CD-ROM. It is an
easy-to-use research environment which you might use to do fron-
tier research in two-dimensional discrete chaos theory, if you have
access to an X-Windows environment. We have included the com-
plete program on the CD-ROM, in an archived and compressed
UNIX file. Instructions for its installation are found in the file
“index.html” on the CD-ROM.

Finally, the CD-ROM contains (in file “index.html”) a few
pointers to relevant websites, for those who have an Internet con-
nection.

How to navigate the CD-ROM
There are two methods for accessing the CD-ROM.
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Method #1. The first method, which we strongly recommend,
makes use of a World Wide Web browser. The one we have used is
Netscape Navigator, which is freely available on the Internet. All
other browsers should work, but we have not tested them. In this
method,

A. Insert the CD-ROM in the CD-ROM drive.

B. Start the browser.

C. Click the File item on the browser menu bar.
D. Choose the “Open File” option

E. Browse to the file “index.html” on the CD-ROM.
F. Open it.

Then all contents of the CD-ROM are displayed for your
choice. This is particularly convenient for the MAPLE script files.
Also, if you happen to be connected to the World Wide Web, you
may click on some links to external servers.

Note Clicking on a movie in the web browser results in a one-
minute wait, while the movie file is copied from the CD-ROM to
your hard disk. This is bad, because you have to wait. On the other
hand it is good, because the movies play better from the hard disk,
unless your equipment is in perfect running order. After the wait,
you will see the first frame of the movie in the web browser win-
dow. You may then start and stop the movie by clicking anywhere in
its frame.

Method #2. This is the fall-back method, and does not require
any software other than the Windows FileManager, Macintosh
Desktop, or UNIX shell.

A. View the contents of the CD-ROM.
B. Double click on the item of choice.

Because this CD-ROM is a hybrid CD, the file structure looks
like Windows to Windows, looks like Macintosh to Macintosh, and
looks like UNIX to UNIX.
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Hardware and software requirements

The 12 movies are each provided in two formats on the CD-
ROM: AVI and QuickTime. Both are 320x240x8 video with 22kHz
by 16 bit sound. On a Macintosh you must use the QuickTime ver-
sions. Under Windows you would choose the AVI version, unless
you have QuickTime for Windows on your system, in which case
you have a choice. QuickTime for Windows is available from Apple
over the Internet, and our CD-ROM has a link to Apple to help you
obtain a copy. In any case, you may play the movies through the
web browser, as described above in the preferred Method #1. On
the other hand, with the fall-back Method #2, the QuickTime mov-
ies may be played with the Movie Player included in the Macintosh
operating system, while the AVl movies may be played with the
MediaPlayer which is part of the Windows operating system.

These movie players have a simple control panel with run and
pause buttons. In addition, you may drag the slider to advance or
reverse the movie at slower or faster than normal speeds. You may
use either format on a UNIX platform, with appropriate software,
such as the freeware “xanim” for X-Windows. On Windows or
Macintosh machines, you may also use a World Wide Web Browser
to play the movies, as we have explained above.

The movies assume that your computer is capable of playing
QuickTime (MOV) or Video for Windows (AVI) movies at 2X
speed, that is, at 300 KB per second. If the movies jerk or stick, that
probably means that your computer needs a tune-up.

Bugs

Every hardware/software platform plays CD-ROMs differently,
and we cannot anticipate all of the potential problems. We have
tested our CD-ROM on several machines of each sort — Windows,
Macintosh, and UNIX. All functions have been robust and correct
except the movie service function.

On older versions of Windows and Macintosh operating sys-
tems, the movie players seem to stick inconsistently. As a work-
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around, try moving the slider back and forth to loosen things up.
Some older systems display a warning message upon first inserting
the CD-ROM in its drive, but <RETURN> seems to work.

Here are some tricks to improve Macintosh movie performance.
Virtual Memory Typically, this is set on, and to about 1MB more
than the actual RAM. For example, with actual RAM 16 MB, set
virtual RAM to 17 MB.Cache MemoryThis may be reduced to
improve movie playingMoviePlayer application memarincrease
the amount of memory devoted to MoviePlayer if you know how.
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gram at the University of California at Santa Cruz.
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PREFACE TO THE WEBSITE

All of the material currently available is found in the book, or
on the CD-ROM. However, upon publication of this package, addi-
tional graphics, questions and answers, will be posted on the web
site devoted to the project and administered by the Visual Math
Institute. We will maintain a Chaos FAQ (Frequently Asked Ques-
tions) and bug reports on the site, and other features which may
prove useful to the international chaos community.

The URL for the web site is: http://www.vismath.org/chaos/jpx
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Our goal isto present the fundamentals of two-dimensional
(2D) iteration theory through examples, with extensive graphics
(for which the 2D context isideal) and few mathematical symbol st
Weillustrate all the basic ideas with hand drawings and mono-
chrome computer graphicsin the book, and again with movies (full-
motion video animations in color) on the companion CD-ROM.

We do not assume a knowledge of higher mathematics. But we
do acknowledge that our subject is abranch of pure mathematics,
and a deeper understanding requires some topology and geometry.
A hint of thisis presented in the appendices, where a more rigorous
approach isintroduced.

1.2 HISTORY

The study of chaosin 1D iterationsisaclassical subject, going
back to Poincaré over a century ago, as described in detail in
Appendix 5. The 2D case (two real variables or one complex vari-
able) also goes back almost a century but the stream of literature to
which this book belongsreally beginswith the computer revolution
and the pioneers of scientific computation — Von Neumann, Ulam,
and so on — in the 1950s. Our subject remains an experimental
domain, and computer graphic experiments provide our main orien-

1. Thisapproach was developed in (Abraham, 1992).
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tation. Our fundamental tool for describing the behavior of 2D
iterations, the critical curve, was introduced by Gumowski and
Mirain 1965.

1.3 PLAN OF THE BOOK

In Part 1, we introduce the basic concepts and vocabulary of
iteration theory, first in 1D, thenin 2D. We try to introduce only as
much theory asis required to understand Part 2, on exemplary
bifurcation sequences. In Part 2, we will use the vocabulary and
ideas of Part 1 to explain step-by-step the events in the exemplary
bifurcation sequences.

We use the critical curvesto understand the structure of attrac-
tors, basins, basin boundaries, and their bifurcations. Then we
increase the bifurcation parameter, and explain the changesin the
configuration of attractors and basins due to bifurcations of various
types, again using the critical curves.

These structures and changes are illustrated with still images
created by our software for the iteration of afixed endomorphism,
based on the method of critical curves. These graphics are strung
together as movies, which may be viewed from the accompanying
CD-ROM, to give amore dynamic idea of the sequence of bifurca-
tion events in each of the exemplary families.

1.4 CONTEXT

Dynamicsis avast subject, and our subject isarelatively new
frontier within it. So, for those who already have an idea of the ter-
ritory of dynamical systems, we would like now to locate our
subject within this larger territory.

Dynamical systems theory has three flavors:

1. See (Gumowski and Mira, 1965) and (Mira, 1965) in the Bibliography.
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« flows are continuous families of invertible maps generated
by a system of autonomous first-order ordinary differential
eguations, and parameterized continuously by time, that is,
by real numbers;

» cascades are discrete families of invertible maps generated
by theiteration of agiven invertible map, and parameterized
discretely by the integers (zero, positive, and negative);

« semi-cascades are discrete families of maps generated by
iteration of a given map, generally noninvertible, and
parameterized discretely by the natural numbers (zero and
the positive integers).

Both cascades and semi-cascades are also known as discrete
dynamical systems, or iterations. In this book we are primarily
interested in semi-cascades generated by a noninvertible map,
(NIM). For simplicity, we will ssimply call these iterationsin future;
but keep in mind that all of this book belongsto the NIM flavor.

In general, the state space, the space in which a dynamical sys-
temsisdefined, may be an arbitrary space of any dimension: 1, 2, 3,
and so on. Thissuggests atableau of types of dynamical systems, as
shownin Fig. 1-1. In this tableau, there is a relationship between
cells on the same diagonal (marked with an A): In each row, the
marked cell isthe cell of lowest dimension in which chaos occurs.
Hence, the tableau is called the stairway to chaos. Here chaos
means any dynamic behavior more complicated than periodic
behavior.

In this book, we discuss only the iteration of noninvertible
maps, and the only state spaces we consider are the one-dimen-
sional Euclidean line and the two-dimensiona Euclidean plane. In
fact, the latter is our primary subject. The 1D case has been exten-
sively treated in recent literature (see M 1) and shares the stairway
to chaos with 2D cascades and 3D flows, the contexts for the early
history of chaos theory. (See Appendix 5.) The second diagonal,
marked with B here, may be regarded as the current frontier of
chaos theory.
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Dimension 1 2 3 4
FIGURE 1-1. Flows A B
The stairway to
chaos. Cascades A B
Semi-cascades | A B %

1.5 BASIC CONCEPTS OF ITERATION THEORY

This section introduces the basic terminology. These concepts
will be explained in detail in 1D and 2D in the next two chapters.

Iterated map: An iterated map is the generator of a discrete
dynamical system; generally a noninvertible, continuous map.

Multiplicity: Our maps are usually noninvertible, that is, many-
to-one, so a given point may have several preimages. The range set
may be decomposed into with zones of constant multiplicity
(bounded by critical points or critical curves) in which all points
have the same number (called the multiplicity) of preimages. These
multiple preimages determine atree of partial inversesfor the map.
Multiplicities (explained further in the next chapter) play afunda
mental role in our theory, analogous to the degree of a polynomial
function.

Critical sets. These sets are boundaries of zones of constant
multiplicity; thus, they separate zones of different multiplicity.
They consist of points with coincident inverses.

Zones: The zones of constant multiplicity play avery funda
mental role in our view of NIM theory, analogous to the role of
degree of apolynomial in algebra.

6 INTRODUCTION
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Partial inverses: By restricting our attention to a zone of con-
stant multiplicity in the range of a map, say multiplicity k, we may
define k inverses to the map. These partial inverses play therole, in
the NIM context, of the inverse of an invertible map.

Trajectory: A trajectory embodies the basic data of a dynamical
system. It consists of the list of locations of the images of a particu-
lar point, called the initial point, under the iterations of the map
generating the dynamical system. It is an ordered sequence (as
opposed to a set) of points.

Attractors, basins, boundaries: These are the chief characteris-
tic features of an iteration, from the qualitative point of view.
Attractors are limit sets of trajectories of initial pointsfilling an
open set, which isthe basin of the attractor. The boundaries of these
basins are particularly important in applications of the theory.

Portrait: The state space of adynamical system may be decom-
posed into a set of open sets (basins), in each of whichisasingle
attractor. The boundaries of these basins are particularly important
in applications of dynamical systems theory.

Bifurcations: These are fundamental changes in the qualitative
behavior of adynamical system, occurring asacontrol parameter is
varied. At certain critical values of the parameter, the qualitative
behavior of the trgjectories of the system suddenly changesin asig-
nificant way. These sudden changes, called bifurcations, usually
occur in sequences, called bifurcation sequences.

1.6 THE FAMILIES OF MAPS

The first family of maps we use to illustrate the basic ideas of
discrete dynamics is from a paper of Kawakami and Kobayashi,
studied also in a paper of Miraand coworkers:

Uu=ax+y

v=b+x2 01
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Usually, we fix the value of a, and vary b to exhibit abifurcation
sequence. We make use of three special casesin Part 2:

e Casel: a=0.7 (Chapter 4, Absorbing Areas)
e Case2: a=1.0(Chapter 5, Holes)

o Case3: a=-1.5 (Chapter 6, Fractal Boundaries).
These parameter ranges are shown in Fig. 1-2.

In Chapter 7, Chaotic Contact Bifurcations, we use the double
logistic map studied by Gardini and coworkers,
u= (1-c)x+4cy(l-vy)

v=(1l-c)y+4cx(1l-x)

EQ2
withcin [0, 1].
FIGURE 1-2.
+2.0 —-+
Parameter space of
thefirst family.
+ Ch.5
|
— —t 2
-2.0 I +2.0
Ch. 4
Ch.6 I -2.0 -+
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1.7 CRITICAL POINTS AND CURVES

The theory of critical curves for maps of the plane provides
powerful tools for locating the chief characteristic features of adis-
crete dynamical system in two dimensions: the location of its
chaotic attractors, its basin boundaries, and the mechanisms of its
bifurcations. We next introduce the basic concepts of this theory
firstin 1D, thenin 2D.

INTRODUCTION
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BASIC CONCEPTS IN 1D

In the preceding chapter we introduced a brief list of basic con-
cepts of discrete dynamics. Here, we expand on these conceptsin
the one-dimensional context, in which, uniquely, we have the
advantage of a simple graphical representation. The official,
abstract definitions of all these concepts may be found in the
Appendices.

2.1 MAPS

By a map we mean a continuous function from a space, called
the domain, to itself.! In the one-dimensional context, the domain
might be an interval (with or without endpoints) of the real number
line, or even the entire line.

If fisamap on aredl interval, I, weindicate thisin symbols
f:l - |. For example, if the map is defined by therule f (x) = x2,
and | isthe closed interval [-2, 2], we may visualize the map graph-
ically, asshownin Fig. 2-1. The action of the map isto move points
from the horizontal axisto the vertical axisin two strokes:
 vertically from the horizontal axis to the graph,
« horizontally from the graph to the vertical axis,
asshownin Fig. 2-2.

The image (or range) of the map isthe set of al points obtained
asf(x) while x takes on all valuesin the domain, I, and iswritten in

1. Theword continuous belongs to the branch of math known as point-set topology. This
wonderful subject is not known as well asit ought to be, but nevertheless, we must use
it constantly.

BASIC CONCEPTS IN 1D 11



symbolsasf[l]. For apointyin |, apreimage of rank 1 isapoint x
in | that is mapped to y; that is, xisapreimage of rank 1 of y if y =
f(x). A preimage of rank 2 of y isapreimage of rank 1 of apreimage
of rank 1, and so on. Every point y in | has a set of preimages of
every rank, which may be empty. Determining all preimages of a
point creates agenealogical tree, called the arborescent sequence of
preimages.

The map f is one-to-one, if, for every point yin I, the set of pre-
images of y has either no points or just one point. For example, the
map f defined by the samerule, f(x) = x2, but with the smaller
domain [0, 1], isone-to-one. A one-to-one map hasaunique inverse
map, f ~ f[I] - lIwhich undoeswhat f does. This can be visual-
ized on the graph of f as amotion in two strokes:

» horizontally from the vertical axis to the graph of f,
« vertically from the graph to the horizontal axis,
asshownin Fig. 2-3.

Note that if wetry to invert the map of Fig. 2-2 by this two-
stroke process, we discover all of the preimages of a given point y
in | (represented as the vertical axis) in one step. Thisisshownin
Fig. 2-4, where we find two preimages.

In this text we will be concerned exclusively with the lowest
step of the staircase to chaos, the 1D case. We will be interested
especially with maps which are not one-to-one. These are called
many-to-one, or noninvertible, maps. For such maps, points gener-
ally have more than one preimage of rank 1, and the number of
preimages of a given rank determines a zone of multiplicity, dis-
cussed below.

2.2 MULTIPLICITIES

Given any map of an interval |, we may choose apointyinl on
the vertical axis, locate all preimages by the graphical method, and
count them up. Thus, we may decompose the vertical axisinto sets

12 BASIC CONCEPTS IN 1D
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of points all sharing the same number of preimages. We denote
these zones by:

« Z, (@l points having no preimages)

« Z, (al points having exactly one preimage)

« Z, (al points having two distinct preimages)
and so on.

These are called the layer sets of the map; those sets that are
nonempty and open (that is, have no boundary points) are called
multiplicity zones. The zones Z, and Z, are shownin Fig. 2-5.
They exhaust the wholeinterval | =[_2, 2] except for the point O,
which separates the two zones. We also say thismap is of type Z; —
Z,, meaning there are two zones, one of multiplicity zero, the other
of multiplicity two. The suffix indicates the multiplicity. The inter-
val Z,, may be considered afolded image, that is, two halves of the
domain | are folded onto thisimage. For each half of the domain,
our map does have an inverse. These are called partial inverses.

The point Oistheonly point of Z, inthisexample; that is, it has
multiplicity one (its unique preimageis0). It iscalled acritical
point because it lies on the boundary of two zones. In fact, we can
describe this map as a nonlinear folding. That is, the map folds the
horizontal axis at the critical point, then stretches them in a nonlin-
ear fashion onto the range interval. Thisiswhy the critical point is
sometimes called a fold point.

Generally, we will be interested in relatively simple maps, such
as polynomials, in which only finite multiplicities, with generic
(that is, typical) fold points, are encountered. We call these finitely
folded maps. For example, atypical cubic map has multiplicities 1
and 3, and we say it isof type Z, —Z5; —Z,. These basic concepts
of iteration theory should be approached through a careful study of
simple (for example, polynomial) examples.

14 BASIC CONCEPTS IN 1D
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2.3 TRAJECTORIES AND ORBITS

A map generates a discrete dynamical system by iteration. That
is, the map is applied again and again, and points move along a dot-
ted path called atrajectory. For example, choosing an initial point
Xo. let x; denote itsimage under the map f, likewise x, the image
of X;, and so on. The infinite sequence (Xy, Xy, X,,...) isthetrajec-
tory of X,. This sequence may jump around afinite set of points.
The minimum set of points which holds atrajectory its called its
orbit. When finite, an orbit is called cyclic, or periodic, and the
number of itspointsisitsorder. A fixed point, defined by f(X) = X, is
aspecial kind of periodic point, the orbit of which isasingle point.
It has order 1. If an orbit contains only two points, it is called a 2-
cycle, and so on.

We now describe a graphical method for plotting trajectories,
called the Koenigs-Lemeray method. Note that in our graphs, both
axes represent the same set, since the domain and range of our map
consist of the same interval.

Given X, envisioned on the horizontal axis, we may find x; on
the vertical axis by the two-stroke method described in 2.1. Next,
we must repeat this process, starting from the point x, on the hori-
zontal axis. Our immediate problem, then, isto transfer the distance
X, from the vertical axisto the corresponding distance on the hori-
zontal axis.

Oneway to carry out thistransfer isshown in Fig. 2-6. Herewe
use a compass to measure the vertical distance, X, , and rotate it to
the horizontal distance, x, . Another method isto use a protractor to
construct aline descending at slope -1, or 45 degrees, as shown in
Fig. 2-7.

Yet another method — and thisisthe one we prefer — is shown
in Fig. 2-8. We draw aline from the lower |eft corner, ascending at
sope 1. Thislineiscalled thediagonal (in symbols, A). Now, using
only asquare, we draw ahorizontal linefrom x; onthevertical axis
until it meets A, then draw a vertical line until it meets the horizon-
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FIGURE 2-7. 2
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tal axis. This determines the horizontal distance, x;, asshownin
Fig. 2-8.

The entire construction from horizontal x to vertical x, to hor-
izontal X, may now be summarized as follows:

 vertical from horizontal axis to graph,

« horizontal from graph to vertical axis,

e horizontal from vertical axisto diagonal,

« vertical from diagonal to horizontal axis.

This construction may be abbreviated somewhat since the third
stroke retraces (undoes) part of the second, as shown in the four
strokes of Fig. 2-9. The abbreviated construction (Fig. 2-10) is:

« vertical from horizontal axisto graph,
e horizontal from graph to diagonal,
« vertical from diagonal to horizontal axis.

Thisisthe three-stroke graphical method for plotting one step
of atrgectory within the horizontal axis. When we proceed to plot
the point x,, by this method, however, we find afurther opportunity
for abbreviation. The last stroke above, which locates x; on the hor-
izontal axis, i.e.,

« vertical from diagonal to horizontal axis,
isfollowed by the first stroke of the second step,

« vertical from horizontal axisto graph,
which may be combined into a single stroke,

« vertical from diagonal to graph.

Thustheiterated sequence, beginning with x, on the horizontal
axis, is:

« vertical from horizontal axisto graph,

e horizontal from graph to diagonal,

« vertical from diagonal to graph,
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FIGURE 2-11.
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2
FIGURE 2-12.
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and continue. After the first step, we may pretend that we are jump-
ing about on the diagonal, which after all isjust another copy of the
domain interval |. Each step has two strokes,

 vertical to the graph; horizontal to the diagonal

(which we may remember by the mnemonic, vertigo-horrid), as
shown in Fig. 2-11. That is the graphical method of Koenigs-Lem-
eray, also known as the staircase method, or cobweb construction.
Using it, we may quickly follow trajectories for several jumpson
the diagonal. See Fig. 2-12.

Using this method, one may graphically verify this useful fact:
if apoint returnsto its starting point after two iterations of the map,
the starting point is either afixed point or a 2-periodic point of the
map.

2.4 ATTRACTORS, BASINS, AND BOUNDARIES

Try out the staircase method using the Myrberg map,*

f(x) = x2—c, withthe entire real line as the domain, and various
values for the control parameter, c. You may quickly find that some
trajectories converge to afixed point, while others run off to positive
infinity (upper right) on the diagonal. The fixed points are seen
immediately as the crossing points of the graph and the diagonal,
and are defined by the property: f(x) = x.

Aninterval iscalled trapping if it is mapped into itself, and
invariant if it is mapped exactly onto itself. If abounded interval is
trapping, then al of its trgjectories are trapped inside, and must
converge to a closed, invariant, and bounded limit set. These limit
sets are the attractors of the map. Attractors may be classified in
three categories:

e apoint attractor isasingle point,
« acyclic attractor is afinite set of points, and

1. Myrberg was one of thefirst to study the bifurcation sequence of this map. See the Bib-
liography for referencesto hiswork.
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e achaotic attractor is any other type of attractor.!

The basin of an attractor isthe set of all points tending to that
attractor. The domain is decomposed into the basins of different
attractors, including the basin of infinity, which consists of all
points whose trajectories run away from any bounded set.

The boundaries of the basins, also called frontiers or separa-
trices, are of primary importance in dynamical systems theory. A
detailed study of amap resultsin aportrait, in which the domainis
decomposed into basins, one attractor shown in each.

2.5 BIFURCATIONS

Asin the Myrberg map, f(x) = x2—c, we frequently encoun-
ter maps which depend on a parameter. As the parameter is
changed, the portrait of the attractive set of the map may change
gradually and insignificantly; however, as certain specia values of
the parameter are crossed, there may be a sudden and significant
change in the portrait of the map. These special values are called
bifurcation points, and the sudden changesin the portrait are called
bifurcations. At the present time, dynamical systems theory does
not have a satisfactory and rigorous definition of bifurcation, but the
subject is now evolving through the study of examples. In fact, the
goal of thisbook is to describe some of these examples, in atwo-
dimensional context.

In the current one-dimensional context, we again have the bene-
fit of an excellent visualization device, the response diagram. In the
case of asingle control parameter, thisisatwo-dimensional graphic
in which the vertical axis represents the domain of the map and the
horizontal axis represents the control parameter. Above each point
on the horizontal axis, the portrait of the corresponding map isindi-
cated, with its attractors, basins, and basin boundaries. For a one-
parameter family of maps of atwo-dimensional domain, the
response diagram is three-dimensional, as we will soon see.

1. Thisreflectsthe fact that different definitions of chaos abound in the literature.
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2.6 EXEMPLARY BIFURCATION

The simplest bifurcations are the fold and the flip. These may
involve changes to any kind of attractor. To introduce the basic con-
cepts of bifurcation theory, however, we will describe the fold
bifurcation in the simplest case, which involves point attractors.

The fold bifurcation is a catastrophic bifurcation. This means
that, as the control parameter varies, an attractor appears or disap-
pears suddenly. In this event, as shown in Fig. 2-13 with the control
parameter moving to the right on the horizontal axis, afixed point
appears, and immediately separates into a pair of distinct fixed
points. Oneis an attractor, the other, arepellor. The repellor is
shown below the attractor. Points between the two fixed points are
attracted to the upper fixed point, and repelled by the lower fixed
point. These tendencies are indicated by the arrowsin Figures 2-15
to 2-17.

To understand the mechanism of this bifurcation, we now turn
to a specific example, the Myrberg family of maps, f (x) = x2—c.
The graph of amap of this family is an upward-opening parabola,
with the vertex on the vertical axis at distance ¢ below the horizon-
tal axis. Asc increases, the parabola moves downward. Three cases
of this graph are shown in Figs. 2-14, 2-15, and 2-16.

In thefirst case, Fig. 2-14, with ¢ =— 0.5, the parabola does not

meet the diagonal because for this value of c, there are no fixed
points. All trgjectories tend upward without bound, to infinity.

In the next case, Fig. 2-15, with ¢ = —0.25, the parabola meets
the diagonal in asingle point, which isthe fixed point x = 0.5, corre-
sponding to this value of ¢, the bifurcation value. Trajectories
approach from below, but depart from above.

In thelast case, Fig. 2-16, with ¢ = 0, the parabola cuts the diag-
onal in two points, the fixed pointsx = 0 and x = 1, which are,
respectively, an attractor and arepellor.
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FIGURE 2-13.
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FIGURE 2-15.

At the fold bifurcation.
The graph of the map
has made contact with
the diagonal at asingle
fixed point.

FIGURE 2-16.

After the fold bifurca-
tion. The graph now
meets the diagonal in
two points, both fixed.

N

N
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FIGURE 2-17.
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Theflip is asubtle bifurcation. This means that, in contrast to
catastrophic and explosive bifurcations, its effect istoo subtle to
observe at the moment of bifurcation when the control parameter
passesits critical value, but becomes apparent later, as the parame-
ter continues to increase. In the flip, a point attractor loses its
attractiveness. From it is emitted a cyclic attractor of period 2.

A response diagram of this event is shown in Fig. 2-17. To the
left of the bifurcation value of the control parameter (horizontal
axis) thereisasingle fixed point, and it is an attractor, FP+. The
attraction in the vertical state space is shown by the heavy arrows.
To theright, thereis still only one fixed point, but it is arepellor,
FP-. But there is also a 2-cycle, which is attractive, 2P+. Looking
only at the attractors in the picture, we see that the attractive point
has been replaced by an attractive 2-cycle, as the control parameter
moves to the right. At first, the two points of this 2-cycle are very
close together, then they gradually separate.

We now move on to two dimensions.
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BASIC CONCEPTS IN 2D

The basic concepts hamed in the Introduction, and described in
the preceding chapter in a1D context, apply with little modification
in the 2D context which is our main concern in this book. We no
longer have the convenience of avisible graph of the map, however,
because the graph of a2D map isa 2D surfacein a4D space.
Therefore, we must be satisfied with afrontal view of the 2D
domain of the map, in which we try to visualize as much as
possible.

3.1 MAPS

As before, by map we mean a continuous function from the
domaintoitself, f:D — D. From now on, the domain will be atwo-
dimensional subset, usually an open subspace, of the plane. For
example, D might be an open rectangle (that is, not containing its
boundary) or the whole plane. The images and preimages of apoint,
the one-to-one property, and noninvertibility are defined asin 2.1.
We now consider noninvertible maps, in 2D.

Note: The complex number maps familiar from the fractal theo-
ries of Fatou, Julia, Mandelbrot, and others may be regarded as real
2D maps. Thus, they fit in the context of this book.

3.2 MULTIPLICITIES AND CRITICAL CURVES

In the context of a given map, we define the layer set, Z,,, asthe
set of points having exactly n preimages of rank 1, wherenis anat-
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ural number: 0, 1, 2,..., and so on. Those layer setsthat are
nonempty open sets are the multiplicity zones. Points on the bound-
aries of the zones, generally, are critical points of the map. In
general, these sets will not exhaust the domain, as there may be
points that have infinitely many preimages of rank 1, and thus do
not belong to Z,, for any n. Even polynomial maps may have this
problem, but generic (that is, amost all) polynomia maps have the
following nice properties:

« thereareonly afinite number of layer sets;

e they exhaust the domain;

« the zones of multiplicity fill aimost all of the domain;

« al layer setsthat are not multiplicity zones consist of criti-
cal points, arranged in a set of piecewise smooth curves.

A map having these nice propertiesis called afinitely folded
map, and a curve consisting of critical pointsiscalled acritical
curve of rank 1, and is denoted by L.* Theimage of acritical curve
of rank 1isacritical curve of rank 2, denoted L, , and so on.

Note: For agivenmap T, L = T[L_;] , where L_; isthecriti-
cal curve of rank 0, and may be thought of as the set of “coincident
preimages’ of points of L.

3.3 AN EXAMPLE

For example, let D be the entire plane. The polynomia map
f:D — D defined by f(x, y) = (u, v), where,
u=ax+y

2
V=Db+Xx

isfinitely folded. Wewill seta=-0.7,and b= 1.0.

(EQ3)

1. Intheorigina literature, L isusually denoted by LC, for the French term, ligne critique.
More rigorous definitions may be found in Appendix 3.
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Figure 3-1 shows part of the domain of the map, the (x, y) space
D, containing the critical curve of rank O, L_, , which coincides
with they axis. It divides the domain into two regions, denoted R,
and R, . Figure 3-2 shows part of the image of the map f, in the (u,
V) space, with the zones of multiplicities zero and two, Z, and Z,,
separated by the critical curve, L. Figure 3-3 shows the two spaces,
superimposed.

Thereisafolding of the (x, y) space, on the critical curve of
rank O, L_, , followed by anonlinear deformation, arotation, and a
movement to the right, into the space of (u, v). The entire (X, y)
space ends up on the zone Z,,, with the critical curve L_; moving
onto the critical curve, L. We may visualize the two regions of the
(X, y) space, R; and R, folded onto one another, then distorted and
pressed down onto Z,. Actually, the two regions mapped are onto
one.

The motion, visualized in this way, may be reversed. This pro-
vides a method to visualize the action of the inverse mapping as
well. A small areain the (u, v) space on theright, if contained
entirely within Z,, will unfold into two small regionsin the (X, y)
space on the |eft, onein theregion R;, the other in R,.

Aswe wish to iterate the map, and to visualize the trgjectories,
attractors, and basins, of our discrete dynamical system, it will be
useful (although initially confusing) to superimpose the (u, v) space
on top of the (X, y) space. Then, as aweak substitute for the graphi-
cal method of Koenigs-Lemaray in the 1D case, we apply the
motion from Fig. 3-1to Fig. 3-2 again and again. Thedomain, D, is
mapped into itself repeatedly. The curve L_; moves onto the curve
L, which in turn moves onto the curve L, and so on. This superim-
positionisshowninFig. 3-3. Thisportrait is the basis of the method
of critical curves, which is the main method of this book.

BASIC CONCEPTS IN 2D 31



FIGURE 3-1.

The domain of (x, )
divided by the critical
curve, x =0.

FIGURE 3-2.

The range of (u, v)
divided by the critical
curve,v=b=1.0.The
image of themap is
abovel.
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FIGURE 3-3.
The image of the map,
superimposed on the i
domain. 4 L
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3.4TRAJECTORIES AND ORBITS

In the 2D context, trajectories and orbits are defined exactly as
in 2.3,. but here they must be plotted in the two-dimensional
domain. Thisis particularly appropriate for computer-generated
plots. And in this computational method, the attractors and their
basins may be discovered by experiment. We usually find the criti-
cal curve of rank — 1 manually by the standard method of vector
calculus (involving the vanishing of the Jacobian determinant, see
Appendix 3), then enter its symbolic description into the computer
program, which can then plot the higher-order iterates. The method
of critical curvesis based on experiments such asthis.

Asinthe 1D case, there are special kinds of orbits which are
important qualitative features of the dynamics of an iterated map.
First among these are the fixed points, which are unmoved by the
map. The different types of fixed points are defined by the motions
of nearby points. The classification is based on the differential cal-
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culus and linear algebra of two-dimensional spaces, but we will
give here only theresults. Excepting certain unusual cases, thereare
five kinds of so-called generic fixed pointsin this classification. The
fivetypesareillustrated in Figs. 3-4 to 3-8.

Another special type of orbit of great importance in the qualita-
tive theory is the periodic orbit, or cyclic orbit, or cycle, which
consists of afinite set of points. The map permutes the points of the
orbit cyclically: If there are n pointsin the orbit, each of the points
returns to its original position after exactly n iterations of the map.
The number n is called the period of the orbit, which isalso called
an n-cycle. A point of an n-cycleissaid to have prime period n, and
isalso afixed point of the map iterated n times. Periodic points are
classified according to their type as a fixed point of the iterated

map.

FIGURE 3-4.

Attractive focus. All
nearby points are
attracted and spiral 0
toward the fixed point. i
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FIGURE 3-5.

Attractive node. All
nearby points are
attracted, and tend to
approach along a curve

through the fixed point. 1t

FIGURE 3-6.

Saddle. A repellor, most
nearby points are
attracted, and then
repelled along a curve
through the fixed point.
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FIGURE 3-7.

Repelling node. All
nearby points are
repelled, and tend to
depart (at least briefly)
along a curve through
the fixed point. The
opposite of an attractive
node.

FIGURE 3-8.

Repelling focus. All
nearby points depart,
spiralling away from the
fixed point. The opposite
of an attractive node.
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3.5 ATTRACTORS

Asinthe 1D case, there are three types of attractors:

e static attractors, also called attractive fixed points,

e periodic attractors, also called cyclic attractors; and
« chaotic attractors.

The static attractors are fixed points which are attractive, that is,
thetrgjectories of all nearby points are attracted to them. Of thefive
types of fixed pointsillustrated in Figs. 3-4 to 3-8, two are attrac-
tive, and three repelling. Periodic attractors are periodic orbits
(orbits of trgjectoriesthat cycle around afinite point set) which are
attractive.

Chaotic attractors are more complicated sets which are attrac-
tive. For the mathematically inclined, technical definitionsare given
in Appendix 2. For others, these concepts will gain meaning
through examples later in the book.

3.6 BIFURCATIONS

The informal definition of bifurcation, in 2D, isthe same asin
1D. Again, there are subtle and catastrophic bifurcations, and other
distinctions such as local versus global bifurcations. These are best
understood in the examples dissected in detail in the following
chapters.

In the 2D context, a one-parameter family of maps may be dis-
played in aresponse diagram, in which the bifurcations may be
seen and analyzed. Thisisa 3D plot in which the domain of the
maps, a 2D set, isarrayed vertically, and moved along a horizontal
axis representing the control parameter. In each of these vertical
planes, the portrait of attractors, basins, and boundaries must be
visualized. In practice, thisis achallenging task of computer graph-
ics, and we usually seek asimpler display. The technique we adopt
for this book, which iswell accommodated by computer graphic
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animation technology and CD-ROM media, is the animated movie.
Thus, we tranglate the control parameter into the time dimension
and view the domain of the map head on, watching the attractor-
basin portrait adjust itself to a time-changing control parameter.

The method of characteristic curves becomes a strategy for the
analysis of these bifurcation movies. So, on to the exemplary bifur-
cation sequences.
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ABSORBING AREAS

We begin with a brief introduction to the concept of absorption
in one and two dimensions, and then study an exemplary bifurca-
tion sequence.

4.1 ABSORBTION CONCEPTS, 1D

We introduced in Chapter 2 the notions of critical points, which
bound zones of multiplicity, and trapping intervals, which are
mapped into themselves. These notions come together in the con-
cept of an absorbing interval. Thisisan interval in the domain of
the map which is trapping, is bounded by critical points, and is
super-attracting, which means that every point sufficiently close to
the critical endpoints will jJump into the absorbing interval after a
finite number of applications of the map.

In the context of an iterated map of an interval, the interesting
dynamics take place within absorbing intervals. The critical points
of aone-dimensiona map determine absorbing intervals, and are
useful in characterizing some bifurcations, especialy those called
global bifurcations. Examples of global bifurcations occur in Chap-
ter 7.

4.2 ABSORBTION CONCEPTS, 2D

In two-dimensional iterations, we have a notion of absorbing
area, generalizing the absorbing intervals of the one-dimensional
case. Thecritical curves of amap of the plane play arole analogous
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to that of the critical points of a one-dimensional map: they are use-
ful in determining absorbing areas. We will now illustrate the role
of critical curvesin determining these important areas in which the
interesting dynamics occur.

In this chapter we will study the first family of quadratic maps
defined in the Introduction. We will now use the map of this family
determined by b = — 0.8 to illustrate the use of critical curvesto
determine an absorbing area.

Our map has two fixed points, P and Q. The basic critical
curve, L, isthe locus of points with “coincident preimages,” that is,
the set of points having nearby points with different numbers of
preimages or rank 1 (see Appendix 3, especially A3.2 —A3.3, for
definitions). The fundamental critical curve L_; is defined as the
preimage of L. Thus, L istheimage of L_; under the map. Simi-
larly, the derived critical curve L, istheimage of L, and so on. All
of these are called critical curves, as described in Chapter 2.

Note for those who have studied vector calculus: In the context
of ageneric smooth map, the fundamental critical curve L_; will be
a subset of the set of critical pointsin the Jacobian sense, points at
which the Jacobian derivative of the map (alinear transformation)
is degenerate (not alinear isomorphism), while the basic critical
curve L isasubset of the set of critical valuesin the Jacobian sense.
Inflection points are Jacobian critical points which do not belong to
L.

For this particular map, L_; isthevertical axis,x=0, and L isa
horizontal line, y = b =-0.8. It will be convenient to choose a
bounded interval in L_;, S_;, with endpoints a_; , which isthe ori-
gin (0, 0), and a,, which istheimage of a_; under the map, the
point (0, —0.8).

Note: The critical curve denoted by L in the text is denoted by
L, inthefigures.

Figure 4-1 shows all these features and more. Note the points
a_; and ay, and the segmentsof L_,, L, L,,..., L,. ASthe map
moves L_, toL, and thepoint a_; to a,, L ismoved to L, and the
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FIGURE 4-1.
) a=0.7 b=-0.8
An absorbing area
bounded by critical
Ccurves.
L,
b, /%
L,
dl
a) Q
()
a, p, |_0

point a, toapoint a; inL;. The transversal® (and here, indeed,
orthogonal) crossing of L_; and L at & is transformed into atan-
gent contact of L and L, at a;. Then this point is mapped to a
tangency of L, and L, at a,, and so on. Note that the curve L,
crosses L_, at thepoint p,, so L istangent to L at the point p, , the
image of p,, and so on. Similarly, the curve L5 crosses L_, at the
point by, so L, istangent to L at b, theimage of b, and so on.

It is worthwhile to pause here and carefully study Figure 4-1. A
point of transversal crossing of any curve, C, through L_; is
mapped into a point of tangency of the image of that curve, f(C),
with L. Thisis because of the folding which occursas L _; is
mapped onto L. Also, a point of tangency of a curve C to the curve
L_, ismapped into a point of tangency of the image curve f(C) and
L.

1. Anintersection of two curvesis said to betransversal if they cross cleanly through each
other in asingle point, and are not tangent to each other.
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FIGURE 4-2.

a=0.7 b=-0.8

An annular absorb-
ing area bounded
by critical curves.

The action of the map may be visualized as a nonlinear folding
of the plane at the fundamental critical curve, L_,, followed by a
nonlinear rotation moving L_; to L around the point a,, and a non-
linear trandlation horizontally along L, so that a_; endsup at a,,.
The critical curves shown in Fig. 4-1 are akind of skeleton of the
map, as we shall see.

Our next goal isto use these critical curvesto discover an
absorbing area of the map. By definition (see Appendix A3.5), an
absorbing areais aregion of the plane such that:

* itismapped into (or onto) itself;

* itsboundary is made up of segments of critical curves, or of

limit points of an infinite sequence of critical curves; and

» it hasaneighborhood every point of which eventually
moves into the absorbing area.

Asan example, notein Fig. 4-1 that thearcs bya; of L, a;a, of
L, a,a5 of L,, aza, of Ly, and a,b, of L, bound aregiond’,
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shown shaded in Fig. 4-1. This shaded region happens to be an
absorbing areal First of al, it isinvariant. For example, the segment
a,b, of L, ison the boundary of the region, d', but the image of
thisarc, agh,, isinternal tod'. Thisisclearly shownin Fig. 4-2, in
which the image of a,b, isindicated in L.

Also, d' isabsorbing: A point external to d' is mapped into d’
in afinite number of iterations, as shown in Fig. 4-3, and thisisthe
case for all points sufficiently near to d'.

Figure 4-2. also shows a shaded area, d',, bounded by the criti-
cal curve segmentsintroduced in Fig. 4-1. It surrounds ahole, W, in
which the fixed point Q islocated. Thisisasmaller absorbing area,
and is called an annular absorbing area for obvious reasons. Gen-
erally, absorbing areas may be topologically more complex, with
many holes, and with many separate pieces.

Absorbing areas must contain attractors. One, d, is shown as a
cloud of dotsin Fig. 4-3. It isthe attracting set of d', and of the
smaller absorbing area, d',,, as well.

Usually there are smaller and smaller absorbing areas around
any attractor of the map. All these, by definition, are bounded by
critical arcs. And asthey get smaller and smaller, but always
enclose the same attractor, it is to be expected that the attractor
itself is bounded by critical arcs, or by limit points of infinite
sequences of critical arcs. Figure 4-4. shows 25 iterates of two
intervalsof L_,, thetwo piecesof d n L_; . These iterates bound
the attractor shown in Fig. 4-3 quite closely.

Another basic concept of dynamicsis the basin of attraction of
an attractor. In the method of critical curves, we usually determine
an absorbing area by the method illustrated above, and thus the
attractor within it, and then determine the basin of attraction of the
absorbing area. In Fig. 4-5 the basin of attraction, D(d'), is shown
asthe whiteregion. Its boundary is made up of the repelli n% (nodal)
fixed point, P, the saddle 2-cycle { Q,, Q,}, and itsinsets.” The
points of the gray region go off to infinity. That is, their trajectories

1. By inset of P we mean the set of points attracted to P, also called the stable set of P.
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FIGURE 4-3.

Theattractor within
the annular absorb-
ing area.

a=0.7 b=-0.8

FIGURE 4-4.

Critical curves con-
verging to the
boundary of the
attractor.

a=0.7 b=-0.8
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FIGURE 4-5.

The attractor in its a=0.7 b=-0.8

basin.

are unbounded. We call this set the basin of infinity, D(c). The
white area D(d") (excluding the fixed point Q and itsrank 1 preim-
age Q_; inZ,) isthe basin of the attractor d.
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4.3 EXEMPLARY BIFURCATION SEQUENCE

In thisfirst exemplary bifurcation sequence, we use the first
family with a= 0.7, and decrease b from — 0.4 to — 1.0, in seven
stages.1 For these values of b, our map always has two fixed points,
P and Q, given by:

P: x = _______(1—32"‘ '\/8)

(1-a—.3)
2

Yy = (1-a)x

Qi x = , Y = (1-a)x

where 3 = (1-a)?2—4b . Also, thereisa2-cycle, {Q;, Q,}.
Stagel: b=-04

Here, the point Q, at about (— 0.5, — 0.15), is an attractive fixed
point. As b decreases, a Neimark-Hopf bifurcation occurs. The
fixed point Q becomes arepellor and the curve I appears as an
attractiveinvariant cycle, I' (aclosed curve mapped onto itself) that
gradually increases in size as b continues to decrease.

Stage2: b=-0.5

In Fig. 4-6, we see the point repellor Q within the attractive
cycle I, and surrounding that, our first absorbing area, d’, shown
shaded in Fig. 4-7. Thisareais mapped into itself, is bounded by
arcs of critical curves, and is attractive (see Appendix 3.5 for the
precise definition). In this case, the absorbing areais bounded by
the arcs of the critical curves, L, L, L,, L, and L. These bound-
ing arcs are generated by successive iterations of the map, aswe
now describe.

1. We follow the paper BB.
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FIGURE 4-6.
a=0.7 b=-0.8
L
b, /% 3
L,
d!
a) Q
L,
&P,
FIGURE 4-7.
a=0.7 b=-05

Q.

ABSORBING AREAS49



FIGURE 4-8.

Noticein Fig. 4-7, which shows the critical arcsin more detail,
that L_; and L are straight lines, crossing orthogonally in one point.
Let a, denote this point, (0, —0.5). Sinceit belongsto L, it hasa
unique preimage, a_;, in L_; . Inthiscase a_, istheorigin (0, 0).

Keeping theinterval a_, a, in mind, we now draw the succes-
sive images of the halfline of L_; issuing from a_, and containing
ay, that is, issuing downwards. The fourth image, lying within L,
crossestheinterval a_, a,, asshown in Fig. 4-7. At this event our
constructive procedure ends, we have found an absorbing area,
shown shaded in thisfigure. Further successive images of the seg-
ment converge on I, as shown in the blowup, Fig. 4-8. This
procedure may be called Procedure 1. A related procedureisillus-
trated in the next stage.

As b continues to decrease, ' expands further and eventually
crossesL_;.
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Stage3: b=-0.6

Inthiscase " crosses L_, inthetwo points p, and . as
shown in Fig. 4-9. The wavy shape of " is a consequence of this
crossing, and may be understood as follows.

Apply the map to the configuration shown in Fig. 4-9. The
points p, and ¢, are mapped into the points p, and g, alsoon .
The straight line segment of L_; between p, and g, is mapped into
the straight line segment of L between p; and g, . Because the map
folds the plane two-to-one while moving L_; to L, the curved seg-
ment of " between p, and g, is carried into the curved segment of
I" between p; and g;, which isabove theline L. The transversal
crossings of I through the line L_; are mapped into tangencies of
" with L at the points p, and g, . These tangencies are shown
clearly in the enlargement, Fig. 4-10. Thisisauniversa property of
curvescrossing L_, : All crossings are mapped into tangencies, or
contacts, because the map folds the plane at L_; and maps the two
sidesof L_; onto just oneside of L. Hence, I' obtains a wave from
the image of its segment which has crossed L _; .

Another effect of these tangenciesisthat ' is now tangent to
the boundary of the absorbing area d' identified in Stage 2 above,
asshown in Fig. 4-11. This absorbing area may be found by the fol-
lowing method, called Procedure 2.

Consider the straight linesegment S ; froma_; toa, inL_; as
above, and construct its successive images a,,,a,,,, 1 by repeated
applications of the map, until the first crossing with L_; , inthe
point by. Seethat thefirstimageof S ,, S, isastraight line seg-
ment from a, to a, inL. The second image, S;, isawave from a;
toa, inLy, likewiseS, inL,, S;inlLs,and S, inL,. ButS,
crosses L_,, and thus by isfound. Let A_; denote the straight line
segment from by toay in L_;. Then A_; containsthe segment S _;
constructed just above, and itsimage A is a straight line segment
from b, toa, inL, containing S;,. Now the curve segments A, S,
S,, S;, B enclose the absorbing area d’, where B is the curve seg-
ment from a, b, within S, and L4, as shown in Fig. 4-12.
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FIGURE 4-9.

a=0.7 b=-06

FIGURE 4-10.

a=0.7 b=-0.6
L.
r
J )/
q. L o P,

52

ABSORBING AREAS




FIGURE 4-11.
a=0.7 b=-0.6

FIGURE 4-12.
a=0.7 b=-0.6
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FIGURE 4-13.

a=0.7 b=-0.6

At this stage, we may see yet another absorbing area, which is
annular in shape. That is, it has a hole. Thisis shown bounded by
shaded curvesin the enlargement of Fig. 4-13. Its boundary is con-
structed of successive images of the straight line segment A_; from
by to &, in L_; . The attractive invariant curve, I, is tangent to the
external boundary of this annular absorbing area, aswell asto its
interior boundary.

Asb decreases further, many bifurcations occur in the dynamics
within these absorbing areas. Probably they have not all been dis-
covered, but we show just afew eventsin the remaining figures of
this chapter.
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Stage4: b=-0.72

At this stage there is an attractive periodic cycle of period 11.
The points of this cycle are labelled in iteration sequencein Fig. 4-
14. This 11-cycle persists as b decreases further, through very many
more bifurcations. The movie on the CD-ROM reveals an astonish-
ing number of these, and many more have been observed, evenin
an interval of b values as narrow as 0.001.

FIGURE 4-14.
a=0.7 b=-0.72
The attractive 11-

cycle. Note the per-
mutation sequence
indicated by the 5
numbers.

11

10
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Stage 5: b=-0.78

At this stage we find two attractors coexisting within the
annular absorbing area, a 28-cycle and an 11-piece chaotic
attractor. These are shown in Fig. 4-15. Near b = 0.798, there is
an explosion to a chaotic attractor filling an annular absorbing
area.

FIGURE 4-15.

. a=0.7 b=-0.78
The 11-cyclic cha-
otic attractor. The Q.
permutation of the
pieces follows the
numbering of Fig.

4-14. { : (7 D ° .
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Stage 6: b =—0.7989995

Fig. 4-16 shows the chaotic attractor, bounded by critical
curves. Passing below b = —0.8, there are a number of additional
bifurcations which have been studied on the research frontier. Some
of them will be described later in this book. Approaching b =— 1.0,
further explosions are found.

FIGURE 4-16.

a=0.7 b=-0.7989995
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Stage 7: b=-0.975

The densely dotted region of Fig. 4-17 isalarge chaotic attrac-
tor, an annular chaotic area, d. The frontier, F, of its basin of
attraction, includes the inset of the 2-cycle, { Q,, Q,}. The bound-
ary of disvery near F. Thisfigure shows that the critical curves (on
the boundary of the former chaotic area) are about to touch (and
then to cross) the inset of the 2-cycle.

The enlargement of Fig. 4-18 shows that, in addition, a contact
of the frontier, F, with the boundary on L is about to occur. This
contact bifurcation, described in Chapter 7, has the effect of
destroying the chaotic attractor, or rather, of transforming it into a
chaotic repellor. Now, almost all of the trajectories diverge to infin-
ity, except for a Cantor set surviving inside the former chaotic area.

A rough idea of the basin of infinity, D(e), isshownin Fig. 4-
19 asablack area. The basin of infinity includes infinitely many
holes in the former absorbing area, d’, only afew of which are
shown in thisfigure. The light areais the basin of attraction of the
attractor d. An enlargement is shown in Fig, 4-20.
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FIGURE 4-17.
a=0.7 b=-0.974

FIGURE 4-18.

a=0.7 b=-0.9745
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FIGURE 4-19.

a=0.7 b=-0.975

FIGURE 4-20.
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CHAPTER 5

HOLES

5.1 INTRODUCTION

We have already encountered holesin the Case 1 of thefirst
map family treated at the end of the preceding chapter (see Fig. 4-
17). We now change the parameter a from 0.7 to 1.0, obtaining Case
2 of thefirst map family, in which the bifurcations involving holes
are somewhat clearer. This change eliminates the repelling 2-cycle,
{Qq, Q,}. Asbefore, the fixed point Q becomes a repelling focus,
but the fixed point P is now a saddle.

The main qualitative features in the portrait of the iterations in
this case are: a bounded absorbing area, d, its basin of attraction,
D(d"), the basin of attraction of infinity, D(c), and the boundary
between these two basins, F, which consists of the saddle P and its
inset.

As the parameter b decreases from zero, the fixed point Q
becomes arepelling focus, giving rise to an attractive closed invari-
antcurve, I, asbefore. AsT™ crosses L_; there are several
bifurcations and an annular absorbing areais obtained, bounded by
afinite number of critical arcs, as before. Inside this annular
absorbing area, a chaotic area appears.

1. SeeFigs. 3-4 to 3-8 to recall the meaning of these terms.
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5.2 EXEMPLARY BIFURCATION SEQUENCE

In this chapter we present a very informative bifurcation
sequence, including some new phenomena, ideas and observations.
We discuss some of these events now, as b decreases from 0.593 to
0.600. We proceed in eleven stages.

Stage 1: b =-0.59300

Using Procedure 2 asin the previous chapter, we find an absorb-
ing aread’, bounded by seven images of the straight line segment
bgag of L_;. Thisisthe shaded areain Fig. 5-1. Note that the
boundary of d' includesarcsof Ly and L.

Inside d' thereis aso an attracting chaotic area, d, as shown in
Fig. 5-2. Within d' there isan annular absorbing area d’,, which
contains d, and is bounded by the iterates of the line segment a, b,
of L_; shownin Fig. 5-1. This absorbing areais shown in Fig. 5-3,
an enlargement is shown in Fig. 5-4.

These critical arcs also define the boundary of the chaotic
attractor, shown in Fig. 5-5 as adensely dotted region. Note that the
boundaries of d’', and dinclude arcsof Lg and L, asshownin
Fig. 5-4, and in fact the entire boundary of d may be defined by crit-
ical arcs.

The basin of attraction D(d") isshown in Fig. 5-6, in which the
gray region denotes the basin of infinity, D( ), The boundary
between these two basins, F, is smooth, and consists of the inset of
the fixed saddle point, P.

Note the corners of the arc of L on the boundary of d’, shown
in Fig. 5-1. This roughness does not occur for higher values of the
bifurcation parameter, b, for which the boundary of d’ is smooth.
The appearance of this arc gives thefirst tongue, afolding arc of a
critical curve, creating roughness of the boundary. This roughness
will increase as b continues to decrease, announcing the approach
of acontact bifurcation.
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FIGURE 5-1.

The absorbing area,
shaded, and
bounded by arcs of
critical curves.

a=1.0 b=-0.593

FIGURE 5-2.

The attractor,
densely dotted by
an actua trajectory.

a=1.0 b=-0.593
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FIGURE 5-3.

With two new seg-
ments.The annular
absorhing area,
shaded, and
bounded by arcs of
critical curves, the
images of thesetwo
segments.

a=1.0 b=-0.593

FIGURE 5-4.

An enlargement a=10 b=-0.593
showing critical
Curves.
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FIGURE 5-5.

An enlargement a=1.0 b=-0.593
showing the attrac-

tor bounded by
critical curves.

a=10 b=-0.593

P acara
o

FIGURE 5-6.

The attractor in its
basin, shaded.
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Stage 2: b =-0.59495

This stage immediately precedes the first contact bifurca-
tion, atype of bifurcation treated in more detail later, in Chapter
7. Figures 5-7 and 5-8, with 17 images of the segment a, b,
show many tongues in the absorbing area, d'.

The chaotic set, d, contains only part of these tongues, as
shown in Fig. 5-9. The tongues of the boundary of d’ are
approaching the inset of the saddle point, P, and thus the bound-
ary of thebasin D(d"). Notethat d’ iscloseto F in Fig. 5-9.

Figure 5-10 shows a smaller annular absorbing area, d', in
d’, containing d. Figure 5-11 shows more detail. Figure 5-12
showsthat d',, and d inside it, are still far from the frontier, F,
of the basin of attraction.

66

HOLES



1.0 b=-0.59495

a=

o0
O
o
[

FIGURE 5-7.
Six critical curves.

FIGURE 5-8.

showing tongues.

Seventeen critical
curves, enlarged,

HOLES
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FIGURE 5-9.

The attractor,
enlarged.

FIGURE 5-10.

Thesmaller annular
absorbing area,
defined by iterates
of areduced arc of
acritical curve.

a=1.0 b=-0.59495
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FIGURE 5-11.

An enlargement of
the shorter critical
arcs.

FIGURE 5-12.

A portion of the
attractor and its
basin, in the
reduced annular
absorbing area.
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Stage 3: b =—0.594962

This stage is almost exactly the moment of the first contact
bifurcation between the absorbing area, d', and the frontier, F. Fig-
ure 5-13 shows that infinitely many tongues on the boundary of d’
approach the fixed saddle, P, which lies on F. These tongues belong
to images of the segment a_; a, of L_; . Thus we have a contact
between the boundary of the absorbing area, d' and the boundary,
F, of itsbasin, D. Figure 5-14 shows an enlargement near the fixed
saddle.

In afurther enlargement, Fig. 5-15, we see a point of contact,
hy, between the boundary of d' and F. The iterates of this point
converge to the saddle, P, as shown in Fig. 5-16. And at each of
these image points, the images of the two boundaries are tangent;
that is, the ends of the tongues are tangent to the inset of the saddle,
P.
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a=1.0 b=-0.594962

FIGURE 5-13.
The attractor,
among critical arcs.

showing portions of
critical curves and

basin. Note the
tongues tangent to

theinset of P.

FIGURE 5-14.
An enlargement,
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Iterates of the point
of tangency con-
vergingto P.

Further enlarge-

ment, showing a

FIGURE 5-15.
point of tangency.
FIGURE 5-16.
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Stage 4: b =—0.59500

This stage isimmediately after the first contact bifurcation. Fig-
ures 5-17 and 5-18, are made of 18 iterates of the segment a, b, of
L_;, where b, istheintersection of S, with L_; (see Fig. 5-1).
They show that some points of the tongues, having crossed through
the inset of P separating the two basins, now are attracted to infin-
ity. Thus, the area defined by Procedure 2 (see 4.3 above) is
unbounded; infinite iterations are required to obtain an areawhich
is absorbing. However, asmaller annular absorbing area, d',, con-
taining d, may be constructed.
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FIGURE 5-17.

Eighteen iterates of
acritical segment.

a=1.0 b=-0.595

FIGURE 5-18.

Enlargement show-
ing critical arcsand
basin. Some
tongues now cross
theinset of P.
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Stage 5: b =—0.59520

Thisstageisalso just after the first contact bifurcation. Because
the frontier, F, isthe inset of the saddle point, P, it isinvariant under
the inverses of the map, by definition.

Figure 5-19 shows that after the first contact bifurcation, holes
(suchasthoselabelled H_;,H 1, , and H 2, ) appear in the basin of
attraction D(d"). These holes belong to the basin of infinity.

Note that topologically, the basin of infinity is not connected. It
has digoint pieces, which are holes of the basin of d'. And this
basin is not simply connected, as it has holes which belong to the
basin of infinity.

Thisis how the holes appear. After thisfirst contact bifurcation,
the frontier F crosses L, creating the sector H, bounded by F and L,
as shown in the enlargement, Fig. 5-20. This sector constitutes a
piece of the basin of infinity in the zone Z,. Since the sector H,
belongs to the basin of infinity, so too do all of its preimages. One
of these, H_; , is shown as asmall shaded holein Figure 5-19. It is
in the zone Z,. (The other, not shown, isin the zone Z,.) The
shaded holesH %, and H 2, arethe two first-rank preimages of the
holeH_;.

The sector H, is bounded by an arc of F, and an arc of L hav-
ing endpoints ryand s;. Thefirst-rank preimage, H_, , of the sector
is composed of two areas joined by thearcr_; s ; of L_;. Thus
H_, isconnected and it is a hole, as shown in Figs. 5-19 and 5-20.
We regard this as amain hole. All other holes are preimages of a
main hole, and they converge to the points Q and Q_; .

We may regard F as the union of F; and F, where F; consists
of the boundaries of all the holes, and F, isthe rest of the boundary
of D(d").

For further analysis of bifurcations involving contact of F and
L, see BB. We will just describe some of the eventsin our present
context. As b continues to decrease, the holesincreasein size.
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FIGURE 5-19.

Theattractor and its
basin.

FIGURE 5-20.

Enlargement, show-
ing theintrusion of
the basin acrossthe
critica line. The
domain of this
enlargement is near
the center of Fig. 5-
19.

a=1.0 b=-0.5952
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Stage 6: b =—0.59600

The preimage of H_; (first-rank preimage of H) hastwo parts
and previously (when b was higher) one of them (denoted by H 2)
belonged to the region, Z, of points having no preimage. But now,
as b decreases further, this preimage becomestangent to L, whichis
the frontier between Z, and Z,, and crosses through it into Z,,.

Thiscrossing isshown in Fig. 5-21. ThusanaN set of holesis
created, an infinite sequence of preimages of H , digoint from our
previous system of holes. All these holes, old and new, get mapped
eventually into the main hole, H,,.

As b decreases further, the holes increase yet further in size.

FIGURE 5-21.

The holes grow
larger.

a=1.0 b=-0.596
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Stage 7: b =—-0.59740

In Fig. 5-22 we seethe same holes asin the preceding stage, but
they are wider. The hole H* 4, which belongsto theregion Z, is
close to the critical curve, L.

See also the enlargement, Fig. 5-23.
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=-0.5974

a10 b

FIGURE 5-22.

The holes are even

larger.

FIGURE 5-23.

An enlargement.
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Stage 8: b =—0.59800

After further decreases in the parameter b, Hﬂ now intersects
L, as shown in Fig. 5-24. Thus, we have passed another contact
blfurcatlon and we have a new system of holes, based on the hole
HZ -4

In the enlargement, Fig. 5-25, we see part of Hﬂ in the zone
Z,, and itsimage under two iterates of the map liesin the part of
HZ above the critical curve, L,. At the recent contact bifurcation,
when H: 2 » becametangent to L, H , became tangent to L,, and
H_; becametangentto L. Thusthlscontact bifurcation changed
the topol ogy (that is, the density of holes) of both the basin D(d',),
and its annular absorbing area, d,.

In Fig. 5-25, we see that the critical arcsof L4, L4, and so on,
crossthe frontier, F .. Before the recent contact bifurcation, these
arcs defined the boundary of an absorbing area. Notice also in Fig.
5-25 the hole H_,, a preimage of the new hole H 13 which
approaches the critical curve L from above, that is, from the zone
Z,. Now anew absorbing area exists, and in Fig. 5-26 we see that
its boundary includes arcs of L, and L,,, without contacts with
F

e
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FIGURE 5-24.

A new system of
holes perforatesthe
basin of our
attractor.

a=1.0 b=-0.598

FIGURE 5-25.

Darker shading
indicates the new
tongues crossing
into the basin of
infinity.
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FIGURE 5-26.

The new absorbing
area, bounded by
these critical
Curves.

Stage 9: b =-0.59820
In Fig. 5-27, the hole H_, becomes tangent to L.

FIGURE 5-27.

The hole has
descended to L
from above.
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Stage 10: b =-0.59824

In Fig. 5-28 the hole H_, crosses L. In this third contact bifur-
cation, we see holes rgjoined, the inverse of the second contact
bifurcation discussed in Stage 9. What had been two distinct holes
(and their preimages) are now reunited, connected by a segment
(and its preimages) in L_, . Thisismarked “reunion” in Fig. 5-28,
compare Fig. 5-24.

In the enlargements, Figs. 5-29 and 5-30, we can see images of
critical arcs defining the boundary of the annular absorbing area,
d,,, and the chaotic area, d. Notice that the holeH_; isin zone Z,,,
but is very closeto L, which belongs to the boundaries of both d;
and d. With further decreases of b, this hole makes contact with L. It
may be established that such a contact will be the next contact
bifurcation, but its effect will be different from the preceding ones.

FIGURE 5-28.

a=1.0 b=-0.59824
Some holes have

now rejoined.

reunion

H,,crossing L
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FIGURE 5-29.

Enlargement, show-
ing the new holes
below L in darker
shading.

FIGURE 5-30.

Enlargement, show-
ing the attractor and
basin with holes.

a=1.0

b=-0.593
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Stage 11, b = -0.598727

Thisisthe stage of contact predicted in Stage 10. The hole,
H_;, istangent to L. The boundary F becomes tangent to the
boundary of d at infinitely many points. These points comprise
the trgjectory of the point k, shown in Fig. 5-34. See Fig. 5-31,
and its enlargements, Figs. 5-32 to 5-36.

The boundary of d has contact with the holeH _;, aswell as
with all itsimages up to the main hole, and the sector H, and its
images. These create the tangency of infinitely many tongues of
dintheinset of P, as shownin Fig. 5-36. Thisis an example of
homoclinic tangency: the tangency of the outset of the saddle
point P to the inset of P. Asthe trgjectory of this point of tan-
gency tends to P in both future and past iterations, it is same-
tending, or homoclinic, in the language of Poincaré.

Therank 1 preimage of the point k, isapoint k_; of L_;
within the chaotic aread (see Fig. 5-35). Thistangency of the
attractor and its basin boundary will cause an explosion of holes
inside the chaotic area. We leave this to the interested reader to
explore using the software ENDO, available through the com-
panion CD-ROM.

The difference between this third contact bifurcation and
those proceeding is that we have here a contact between the
boundary of d, achaotic area, and the boundary, F, of its
basin.This contact causes the destruction of the chaotic aread,
which is changed from an attractor to arepellor. The hole
H_(f+1) (the preimage of H_) possesses an arborescent
sequence of preimages inside the chaotic area, d, leaving a cha-
otic repellor. Nearby trajectories are now attracted to other
attractors, at infinity.
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FIGURE 5-31.

Thethird contact
bifurcation.

a=1.0 b=-0.598727

FIGURE 5-32.

Enlargement of a
rectangle near the
center of Fig. 5-31.
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FIGURE 5-33.

The basic hole.

FIGURE 5-34.

The point of
contact.
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FIGURE 5-35.

A preimage of the
point of contact.

FIGURE 5-36.

Many contacts of
the boundary of the
chaotic areaand the
boundary of its
basin.
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interior 169 Poincaré 186

invariant 22 portrait 7,22
island 92 preimage 12,29
iterated map 6 prime period 34
iteration 5, 183
R
K range 11
Koenig-Lemeray method 16 repelling focus 36
repelling node 36
L repellor 181
layer set 14,29
S
M saddle 35
map 11,29,171,181 semi-cascade 5
multiplicity 6,14,30 separatrix 22
Myrberg map 22 snap-back repellor 131
stable manifold 45
N staircase method 19

stairway to chaos 5
state space 5
static attractor 37

noninvertible 5,12,29
nonlinear oscillations 225

o T
orbit 14,171
order 16 tongue 62
topological closure 169
trajectory 7,14,171
P o transversal 42
gzgi)a; 1?r)lzerses 6,14 trapping 22
period-doubling 125 7
periodic 16
zone 6

periodic attractor 37
periodic orbit 34
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