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FOREWORD TO THE PROJECT

You are looking at the outcome of a three-year project, a uniq
experiment in electronic publishing. For lack of a better word, w
call this a package. It has three intertwined components: a book, a 
CD-ROM, and a website. It is perhaps the first such multimedia 
package devoted to an advanced branch of mathematics.

The book is the primary component, and it is extensively illu
trated with monochrome computer graphics. The CD-ROM is 
devoted mainly to 12 computer graphic animations in color, whi
animate and expand the graphics in the book. The user interfac
the CD-ROM is made in the style, and with the technology, of th
World Wide Web. Therefore, it integrates seamlessly with the w
site devoted to the book and CD-ROM, which is maintained at t
Visual Math Institute. This website also connects outward with t
resources of the World Wide Web.

The motivation for this unique package is the conviction that
this style of electronic publication is the ideal medium for mathe
matical communication, and especially, for the branch of mathe
matics known as dynamical systems theory, including our subje
noninvertible discrete chaos theory in two dimensions. The esse
of this communicative style is the dynapic technique, in which a 
drawing is developed stroke-by-stroke, along with a carefully co
dinated spoken commentary. This is the traditional method used
most mathematicians, when speaking among themselves: Visual 
Math!

We will now introduce the three components separately.
DISCRETE DYNAMICAL SYSTEMS IN 2D vii
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PREFACE TO THE BOOK

This book is a visual introduction to chaos and bifurcations i
noninvertible discrete dynamical systems in two dimensions, by 
method of critical curves.

Historical Background

Dynamical systems theory is a classical branch of mathema
which began with Newton around 1665. It provides mathematic
models for systems which evolve in time according to a rule, ori
nally expressed in analytical form as a system of ordinary differ
tial equations. These models are called continuous dynamical 
systems. They are also called flows, as the points of the system 
evolve by flowing along continuous curves.

In the 1880s, Poincaré studied continuous dynamical system
connection with a prize competition on the stability of the solar s
tem. He found it convenient to replace the continuous flow of tim
with a discrete analogue, in which time increases in regular, sal
tory jumps. These systems are now called discrete dynamical sys-
tems. So, for over a century, dynamical systems have come in tw
flavors: continuous and discrete. Discrete dynamical systems a
usually expressed as the iteration of a map (also called an endo
phism) of a space into itself. In these systems, points of the sys
jump along dotted lines with a regular rhythm.

In the context of a discrete dynamical system, in which a giv
map is iterated, that map might be invertible (because of being one
to-one and onto) or noninvertible (failing one or the other or both of
these conditions). So, discrete dynamical systems come in two 
types, invertible and noninvertible. The invertible maps were intr
duced by Poincaré, and have been extensively studied ever sin
The studies of noninvertible maps have been more sparse until 
recently, when they became one of the most active areas on the
research frontier because of their extraordinary usefulness in ap
cations.
viii DISCRETE DYNAMICAL SYSTEMS IN 2D
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Chaos theory is a popular pseudonym for dynamical systems
theory. This new name became popular about 20 years ago, wh
its applicability to chaotic systems in nature became widely kno
through the advent of computer graphics. As there are two flavo
of dynamical systems, continuous and discrete, there are also t
chaos theories. The first to develop, in the work of Poincaré abo
century ago, was the theory of chaotic behavior in continuous s
tems. He also studied chaotic behavior in discrete dynamical sy
tems generated by an invertible map.

Discrete chaos theory for noninvertible maps began some ye
after Poincaré. Its development has been accelerated particular
since the computer revolution, and today it is a young and activ
field of study. The earliest development of the theory came in th
context of one-dimensional maps, that is, the iteration of a real 
function of a single real variable. One of the key tools in the one
dimensional theory was the calculus of critical points, such as lo
maxima and minima. The two-dimensional context is the current 
research frontier, and, it is the subject of this book.

For two-dimensional noninvertible maps, the critical curve is a 
natural extension of the classical notion of critical point for one-
dimensional noninvertible maps. The first introduction of the crit
cal curve, as a mathematical tool for two-dimensional noninverti
maps, appeared in papers by Gumowski & Mira in the 1960s (s
the bibliographies at the end of the book for references.)

The importance of our subject

Chaos theory generally is crucially important in all the scienc
(physical, biological, and social) because of its unique capability
for modeling those natural systems which behave chaotically. It
for this reason that there is a chaos revolution now ongoing in th
sciences. For those systems which present continuous, evolvin
data (such as the solar system) — continuous chaos theory prov
models. And for those which present discrete data (such as eco
ics) — discrete chaos theory provides models. One advantage 
DISCRETE DYNAMICAL SYSTEMS IN 2D ix
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discrete dynamical models is the ease and speed of simulating 
models with digital computers, as compared with continuous 
dynamical models. Discrete models are sometimes advantageo
even in the context of natural systems presenting continuous da

Uniqueness of this publication

The book component of this book/CD-ROM/Website package
not a conventional text book, and yet its purpose is pedagogic. 
intends to provide any interested person having a minimal back
ground in mathematics, but with a basic understanding of the la
guage of set-theory, to become an initiate in this new field. It is 
unique in providing both an elementary and a visual approach to
subject. While chaos theory is mathematically sophisticated, by
focusing on examples and visual representations — there are a
one hundred computer graphics in the book — and minimizing 
symbols and jargon of formal mathematics — they are relegate
a set of appendices — the text provides the reader with an easy
entry into this important and powerful theory. The primary focus
the package is the concept of bifurcation for a chaotic attractor. 
These are introduced in four exemplary bifurcation sequences, e
defined by a family of very simple noninvertible maps of the plan
into itself. Each family, the subject of an entire chapter in the bo
exhibits many bifurcations.

And as dynamics involves motion, computer graphic anima-
tions provide a particularly appropriate medium for communicati
dynamical concepts. The CD-ROM contains 12 animations whic
bring life to the basic ideas of the theory, literally animating the s
images of the book. For each of the four map families there is o
long, fast movie which is a fast forward through the entire chapt
as well as two “zooms” which expand a brief piece of the action
into a slow motion movie. The movies can be understood only b
reading along in the book while viewing the movie. The motion 
controls of the movie players (in both the Windows and the Mac
tosh environments) allow easy stop, play, fast-forward, reverse, 
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slow-motion, by dragging a slider. This makes the CD-ROM ide
for studying in conjunction with the book.

Intended audience

While many devotees of pure mathematics may enjoy this pa
age for the novelty of its fresh ideas and the mathematical challe
of a new subject, with most of its main problems unsolved, the 
intended audience for this book is the large and heterogeneous
group of science students and working scientists who must, due
the nature of their work, deal with the modeling and simulation o
data from complex dynamical systems of nature which are intrin
cally discrete. This means, for example, applied scientists, engi
neers, economists, ecologists, and students of these fields.

How to use the book

The book is divided in three parts, which are almost indepen
dent, and which can be utilized in parallel. The first part provide
the simplest introduction to the basic concepts of discrete chao
theory, with many drawings and examples. The second part is a
detailed analysis of computer experiments with four families of d
crete chaotic systems, with emphasis on the method of critical 
curves, and the phenomena of bifurcation. The third part is a se
appendices which provide more official definitions for readers h
ing a stronger background in abstract mathematics. Here, is als
found extensive historical material by Professor Mira, some ma
available in English for the first time. It is proposed that the seco
part be regarded as a “guided tour” through a very difficult terra
and each example studied repeatedly, with recourse as necess
(using the index) to the first and third parts, and to the CD-ROM
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ABOUT THE BOOK AUTHORS

Ralph Abraham is Professor of Mathematics at the Universit
of California at Santa Cruz, founder of the graduate program th
on computational dynamics, and is an author of 

• Foundations of Mechanics, 

• Manifolds, Tensor Analysis, and Applications, and

• Dynamics, the Geometry of Behavior.

Laura Gardini is Professor of Mathematics in the Universities
Urbino and Brescia in Italy, and is an author of

• Chaotic Dynamics: Two-Dimensional Endomorphisms.

Christian Mira is Professor of Control Engineering at the Un
versity of Paul-Sabbatier in France, is the founder of a laborator
computational dynamics there, and is an author of 

• Dynamique chaotique: transformations ponctuelles, transition
ordre-desordre, 

• Recurrences and discrete dynamic systems, 

• Chaotic Dynamics, and

• Chaotic Dynamics: Two-Dimensional Endomorphisms.

As the creator of the method of critical curves, Christian Mira
brings to this book long and extensive experience in the field. La
Gardini extended the method of critical curves and applied it ex
sively, recently obtaining many new results. Ralph Abraham, 
known for his pioneering work — and his extensive book writing
and illustrating — on continuous dynamical systems since 1960
met Mira and Gardini at a conference in June, 1991, and quickl
became their co-author in this work.
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PREFACE TO THE CD-ROM

The CD-ROM supplied in the back of the book is intended as
enhancement to the book. Its main function is to animate the gr
ics in chapters 4 through 7 with 12 movies. It also contains som
useful software. This companion CD-ROM may be regarded as
“canned” piece of the World Wide Web. It has an index which m
be accessed by any WWW browser, like Netscape Navigator, o
Internet Explore. The CD also connects seamlessly with the We
your computer has Internet access.

The movies

The movies for chapters 4, 5, 6, and 7 are computer graphic
mations, created by extensive computations with ENDO, an X-W
dows software package for research on discrete dynamical sys
in two dimensions created by Ronald Joe Record. These movie
provide the best opportunity to understand the role of critical cur
in the bifurcations presented in these chapters. 

Each of the four chapters — 4, 5, 6, and 7 — present an exe
plary bifurcation sequence. This means that we are given a one
parameter family of maps, and we carefully observe a chaotic 
attractor as the parameter is varied. Certain special events calle
bifurcations occur, perhaps very frequently, as the parameter is
changed. In each of these chapters, we have singled out just a 
of these special events for special attention, we call them “stage

For example, in Chapter 4, there are 12 stages. In the book,
monochrome computer graphics are included for each of these 
stages, along with extensive commentary which tries to explain
(very complicated) images.

In the movies, the stages are embedded in a very large num
of in-between images, which are then flashed on the screen like
flip book. Thus, the still-frame black-and-white stage images of 
book are embedded in an apparently continuous, uniform, seque
of color-coded images in the movies. The color code is a one-
DISCRETE DYNAMICAL SYSTEMS IN 2D xiii
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dimensional spectral scale from blue to red, and is shown at the
right side of the screen in all of the movies. In the square frame
the movies, the color blue indicates a low relative density of traj
tory points in a given small square of the plane, while red indica
a high density.

Additional CD-ROM content

Besides the twelve movies, each in two formats, the CD-RO
also contains additional material: MAPLE and ENDO.

The 96 computer graphics in chapters 4 through 7 of the bo
(with four exceptions) have been computed in the mathematica
programming language MAPLE by Scott Hotton. For the 92 imag
that have been made by in this way, the complete programs (the
are plain text files) may be read directly from the CD-ROM. Rea
ing one of these files, with the help of a MAPLE programming 
manual if needed, answers all possible questions about the figu
in the book: the size of the domain, the number of points, etc. In
addition, the programs are very easily modified and run in the 
MAPLE environment, to do further research in chaos theory. 

The ENDO program, written by Ron Record, was used by hi
to make all of the frames of the movies on the CD-ROM. It is an
easy-to-use research environment which you might use to do fr
tier research in two-dimensional discrete chaos theory, if you ha
access to an X-Windows environment. We have included the co
plete program on the CD-ROM, in an archived and compressed
UNIX file. Instructions for its installation are found in the file 
“index.html” on the CD-ROM.

Finally, the CD-ROM contains (in file “index.html”) a few 
pointers to relevant websites, for those who have an Internet co
nection.

How to navigate the CD-ROM

There are two methods for accessing the CD-ROM. 
xiv DISCRETE DYNAMICAL SYSTEMS IN 2D
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Method #1. The first method, which we strongly recommend
makes use of a World Wide Web browser. The one we have use
Netscape Navigator, which is freely available on the Internet. Al
other browsers should work, but we have not tested them. In th
method, 

A. Insert the CD-ROM in the CD-ROM drive.

B. Start the browser.

C. Click the File item on the browser menu bar.

D. Choose the “Open File” option

E. Browse to the file “index.html” on the CD-ROM.

F. Open it.

Then all contents of the CD-ROM are displayed for your 
choice. This is particularly convenient for the MAPLE script files
Also, if you happen to be connected to the World Wide Web, yo
may click on some links to external servers. 

Note: Clicking on a movie in the web browser results in a on
minute wait, while the movie file is copied from the CD-ROM to 
your hard disk. This is bad, because you have to wait. On the o
hand it is good, because the movies play better from the hard d
unless your equipment is in perfect running order. After the wait
you will see the first frame of the movie in the web browser win-
dow. You may then start and stop the movie by clicking anywhere
its frame.

Method #2. This is the fall-back method, and does not requi
any software other than the Windows FileManager, Macintosh 
Desktop, or UNIX shell.

A. View the contents of the CD-ROM.

B. Double click on the item of choice. 

Because this CD-ROM is a hybrid CD, the file structure look
like Windows to Windows, looks like Macintosh to Macintosh, an
looks like UNIX to UNIX.
DISCRETE DYNAMICAL SYSTEMS IN 2D xv
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Hardware and software requirements

The 12 movies are each provided in two formats on the CD-
ROM: AVI and QuickTime. Both are 320x240x8 video with 22kH
by 16 bit sound. On a Macintosh you must use the QuickTime v
sions. Under Windows you would choose the AVI version, unles
you have QuickTime for Windows on your system, in which cas
you have a choice. QuickTime for Windows is available from App
over the Internet, and our CD-ROM has a link to Apple to help y
obtain a copy. In any case, you may play the movies through th
web browser, as described above in the preferred Method #1. O
the other hand, with the fall-back Method #2, the QuickTime mo
ies may be played with the Movie Player included in the Macinto
operating system, while the AVI movies may be played with the
MediaPlayer which is part of the Windows operating system. 

These movie players have a simple control panel with run an
pause buttons. In addition, you may drag the slider to advance 
reverse the movie at slower or faster than normal speeds. You m
use either format on a UNIX platform, with appropriate software
such as the freeware “xanim” for X-Windows. On Windows or 
Macintosh machines, you may also use a World Wide Web Brow
to play the movies, as we have explained above.

The movies assume that your computer is capable of playin
QuickTime (MOV) or Video for Windows (AVI) movies at 2X 
speed, that is, at 300 KB per second. If the movies jerk or stick, 
probably means that your computer needs a tune-up.

Bugs

Every hardware/software platform plays CD-ROMs differentl
and we cannot anticipate all of the potential problems. We have
tested our CD-ROM on several machines of each sort — Windo
Macintosh, and UNIX. All functions have been robust and corre
except the movie service function.

On older versions of Windows and Macintosh operating sys-
tems, the movie players seem to stick inconsistently. As a work
xvi DISCRETE DYNAMICAL SYSTEMS IN 2D



. 
rting 

ce. 

 

.

around, try moving the slider back and forth to loosen things up
Some older systems display a warning message upon first inse
the CD-ROM in its drive, but <RETURN> seems to work.

Here are some tricks to improve Macintosh movie performan
Virtual Memory: Typically, this is set on, and to about 1MB more 
than the actual RAM. For example, with actual RAM 16 MB, set
virtual RAM to 17 MB. Cache Memory: This may be reduced to 
improve movie playing. MoviePlayer application memory: Increase 
the amount of memory devoted to MoviePlayer if you know how
DISCRETE DYNAMICAL SYSTEMS IN 2D xvii
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ABOUT THE CD-ROM AUTHORS

Ralph H. Abraham created the computational dynamics pro-
gram at the University of California at Santa Cruz.

Ronald Joe Record is a Ph.D. graduate of the computationa
dynamics program at the University of California at Santa Cruz,
and now works as a software engineer in Santa Cruz. 

PREFACE TO THE WEBSITE

All of the material currently available is found in the book, or
on the CD-ROM. However, upon publication of this package, ad
tional graphics, questions and answers, will be posted on the w
site devoted to the project and administered by the Visual Math
Institute. We will maintain a Chaos FAQ (Frequently Asked Que
tions) and bug reports on the site, and other features which ma
prove useful to the international chaos community.

The URL for the web site is: http://www.vismath.org/chaos/jp
xviii DISCRETE DYNAMICAL SYSTEMS IN 2D
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INTRODUCTION 3

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND 

Our goal is to present the fundamentals of two-dimensional 
(2D) iteration theory through examples, with extensive graphics 
(for which the 2D context is ideal) and few mathematical symbols.1 
We illustrate all the basic ideas with hand drawings and mono-
chrome computer graphics in the book, and again with movies (full-
motion video animations in color) on the companion CD-ROM. 

We do not assume a knowledge of higher mathematics. But we 
do acknowledge that our subject is a branch of pure mathematics, 
and a deeper understanding requires some topology and geometry. 
A hint of this is presented in the appendices, where a more rigorous 
approach is introduced. 

1.2 HISTORY

The study of chaos in 1D iterations is a classical subject, going 
back to Poincaré over a century ago, as described in detail in 
Appendix 5. The 2D case (two real variables or one complex vari-
able) also goes back almost a century but the stream of literature to 
which this book belongs really begins with the computer revolution 
and the pioneers of scientific computation — Von Neumann, Ulam, 
and so on — in the 1950s. Our subject remains an experimental 
domain, and computer graphic experiments provide our main orien-

1.  This approach was developed in (Abraham, 1992).



intro.frame  Black   #2

4 INTRODUCTION

tation. Our fundamental tool for describing the behavior of 2D 
iterations, the critical curve, was introduced by Gumowski and 
Mira in 1965.1

1.3 PLAN OF THE BOOK

In Part 1, we introduce the basic concepts and vocabulary of 
iteration theory, first in 1D, then in 2D. We try to introduce only as 
much theory as is required to understand Part 2, on exemplary 
bifurcation sequences. In Part 2, we will use the vocabulary and 
ideas of Part 1 to explain step-by-step the events in the exemplary 
bifurcation sequences. 

We use the critical curves to understand the structure of attrac-
tors, basins, basin boundaries, and their bifurcations. Then we 
increase the bifurcation parameter, and explain the changes in the 
configuration of attractors and basins due to bifurcations of various 
types, again using the critical curves. 

These structures and changes are illustrated with still images 
created by our software for the iteration of a fixed endomorphism, 
based on the method of critical curves. These graphics are strung 
together as movies, which may be viewed from the accompanying 
CD-ROM, to give a more dynamic idea of the sequence of bifurca-
tion events in each of the exemplary families.

1.4 CONTEXT

Dynamics is a vast subject, and our subject is a relatively new 
frontier within it. So, for those who already have an idea of the ter-
ritory of dynamical systems, we would like now to locate our 
subject within this larger territory.

Dynamical systems theory has three flavors:

1.  See (Gumowski and Mira, 1965) and (Mira, 1965) in the Bibliography.
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• flows are continuous families of invertible maps generated 
by a system of autonomous first-order ordinary differential 
equations, and parameterized continuously by time, that is, 
by real numbers;

• cascades are discrete families of invertible maps generated 
by the iteration of a given invertible map, and parameterized 
discretely by the integers (zero, positive, and negative);

• semi-cascades are discrete families of maps generated by 
iteration of a given map, generally noninvertible, and 
parameterized discretely by the natural numbers (zero and 
the positive integers).

Both cascades and semi-cascades are also known as discrete 
dynamical systems, or iterations. In this book we are primarily 
interested in semi-cascades generated by a noninvertible map, 
(NIM). For simplicity, we will simply call these iterations in future; 
but keep in mind that all of this book belongs to the NIM flavor.

In general, the state space, the space in which a dynamical sys-
tems is defined, may be an arbitrary space of any dimension: 1, 2, 3, 
and so on. This suggests a tableau of types of dynamical systems, as 
shown in Fig. 1-1. In this tableau, there is a relationship between 
cells on the same diagonal (marked with an A): In each row, the 
marked cell is the cell of lowest dimension in which chaos occurs. 
Hence, the tableau is called the stairway to chaos. Here chaos 
means any dynamic behavior more complicated than periodic 
behavior.

In this book, we discuss only the iteration of noninvertible 
maps, and the only state spaces we consider are the one-dimen-
sional Euclidean line and the two-dimensional Euclidean plane. In 
fact, the latter is our primary subject. The 1D case has been exten-
sively treated in recent literature (see M1) and shares the stairway 
to chaos with 2D cascades and 3D flows, the contexts for the early 
history of chaos theory. (See Appendix 5.) The second diagonal, 
marked with B here, may be regarded as the current frontier of 
chaos theory.
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.

1.5 BASIC CONCEPTS OF ITERATION THEORY

This section introduces the basic terminology. These concepts 
will be explained in detail in 1D and 2D in the next two chapters.

Iterated map: An iterated map is the generator of a discrete 
dynamical system; generally a noninvertible, continuous map.

Multiplicity: Our maps are usually noninvertible, that is, many-
to-one, so a given point may have several preimages. The range set 
may be decomposed into with zones of constant multiplicity 
(bounded by critical points or critical curves) in which all points 
have the same number (called the multiplicity) of preimages. These 
multiple preimages determine a tree of partial inverses for the map. 
Multiplicities (explained further in the next chapter) play a funda-
mental role in our theory, analogous to the degree of a polynomial 
function.

Critical sets: These sets are boundaries of zones of constant 
multiplicity; thus, they separate zones of different multiplicity. 
They consist of points with coincident inverses. 

Zones: The zones of constant multiplicity play a very funda-
mental role in our view of NIM theory, analogous to the role of 
degree of a polynomial in algebra.

A

Flows

Cascades

Semi-cascades

Dimension 1 2 3

A

A

B

B

B

4

FIGURE 1-1.

The stairway to 
chaos.
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Partial inverses: By restricting our attention to a zone of con-
stant multiplicity in the range of a map, say multiplicity k, we may 
define k inverses to the map. These partial inverses play the role, in 
the NIM context, of the inverse of an invertible map.

Trajectory: A trajectory embodies the basic data of a dynamical 
system. It consists of the list of locations of the images of a particu-
lar point, called the initial point, under the iterations of the map 
generating the dynamical system. It is an ordered sequence (as 
opposed to a set) of points.

Attractors, basins, boundaries: These are the chief characteris-
tic features of an iteration, from the qualitative point of view. 
Attractors are limit sets of trajectories of initial points filling an 
open set, which is the basin of the attractor. The boundaries of these 
basins are particularly important in applications of the theory.

Portrait: The state space of a dynamical system may be decom-
posed into a set of open sets (basins), in each of which is a single 
attractor. The boundaries of these basins are particularly important 
in applications of dynamical systems theory.

Bifurcations: These are fundamental changes in the qualitative 
behavior of a dynamical system, occurring as a control parameter is 
varied. At certain critical values of the parameter, the qualitative 
behavior of the trajectories of the system suddenly changes in a sig-
nificant way. These sudden changes, called bifurcations, usually 
occur in sequences, called bifurcation sequences.

1.6 THE FAMILIES OF MAPS

The first family of maps we use to illustrate the basic ideas of 
discrete dynamics is from a paper of Kawakami and Kobayashi, 
studied also in a paper of Mira and coworkers:

EQ 1

u ax y+=

v b x2+=
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Usually, we fix the value of a, and vary b to exhibit a bifurcation 
sequence. We make use of three special cases in Part 2:

• Case 1: a = 0.7 (Chapter 4, Absorbing Areas)

• Case 2: a = 1.0 (Chapter 5, Holes) 

• Case 3: a = -1.5 (Chapter 6, Fractal Boundaries).

These parameter ranges are shown in Fig. 1-2.

In Chapter 7, Chaotic Contact Bifurcations, we use the double 
logistic map studied by Gardini and coworkers,

EQ 2

with c in [0, 1]. 

.

u 1 c−( ) x 4cy 1 y−( )+=

v 1 c−( ) y 4cx 1 x−( )+=

a

b

-2.0

+2.0

-2.0 +2.0

Ch. 4

Ch. 5

Ch. 6

FIGURE 1-2.

Parameter space of 
the first family.
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1.7 CRITICAL POINTS AND CURVES

The theory of critical curves for maps of the plane provides 
powerful tools for locating the chief characteristic features of a dis-
crete dynamical system in two dimensions: the location of its 
chaotic attractors, its basin boundaries, and the mechanisms of its 
bifurcations. We next introduce the basic concepts of this theory 
first in 1D, then in 2D.
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CHAPTER 2

BASIC CONCEPTS IN 1D

In the preceding chapter we introduced a brief list of basic con-
cepts of discrete dynamics. Here, we expand on these concepts in 
the one-dimensional context, in which, uniquely, we have the 
advantage of a simple graphical representation. The official, 
abstract definitions of all these concepts may be found in the 
Appendices.

2.1 MAPS

By a map we mean a continuous function from a space, called 
the domain, to itself.1 In the one-dimensional context, the domain 
might be an interval (with or without endpoints) of the real number 
line, or even the entire line. 

If f is a map on a real interval, I, we indicate this in symbols 
. For example, if the map is defined by the rule , 

and I is the closed interval [-2, 2], we may visualize the map graph-
ically, as shown in Fig. 2-1. The action of the map is to move points 
from the horizontal axis to the vertical axis in two strokes: 

• vertically from the horizontal axis to the graph, 

• horizontally from the graph to the vertical axis,

as shown in Fig. 2-2. 

The image (or range) of the map is the set of all points obtained 
as f(x) while x takes on all values in the domain, I, and is written in 

1.  The word continuous belongs to the branch of math known as point-set topology. This 
wonderful subject is not known as well as it ought to be, but nevertheless, we must use 
it constantly.

f :I I→ f x( ) x2=
BASIC CONCEPTS IN 1D 11



                                                                              
symbols as f[I]. For a point y in I, a preimage of rank 1 is a point x 
in I that is mapped to y; that is, x is a preimage of rank 1 of y if y = 
f(x). A preimage of rank 2 of y is a preimage of rank 1 of a preimage 
of rank 1, and so on. Every point y in I has a set of preimages of 
every rank, which may be empty. Determining all preimages of a 
point creates a genealogical tree, called the arborescent sequence of 
preimages.

The map f is one-to-one, if, for every point y in I, the set of pre-
images of y has either no points or just one point. For example, the 
map f defined by the same rule, , but with the smaller 
domain [0, 1], is one-to-one. A one-to-one map has a unique inverse 
map, : which undoes what f does. This can be visual-
ized on the graph of f as a motion in two strokes:

• horizontally from the vertical axis to the graph of f,

• vertically from the graph to the horizontal axis,

as shown in Fig. 2-3.

Note that if we try to invert the map of Fig. 2-2 by this two-
stroke process, we discover all of the preimages of a given point y 
in I (represented as the vertical axis) in one step. This is shown in 
Fig. 2-4, where we find two preimages.

In this text we will be concerned exclusively with the lowest 
step of the staircase to chaos, the 1D case. We will be interested 
especially with maps which are not one-to-one. These are called 
many-to-one, or noninvertible, maps. For such maps, points gener-
ally have more than one preimage of rank 1, and the number of 
preimages of a given rank determines a zone of multiplicity, dis-
cussed below.

2.2 MULTIPLICITIES

Given any map of an interval I, we may choose a point y in I on 
the vertical axis, locate all preimages by the graphical method, and 
count them up. Thus, we may decompose the vertical axis into sets 

f x( ) x2=

f 1– f I[ ] I→
12 BASIC CONCEPTS IN 1D
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FIGURE 2-1.

Graph of f on 

I = [-2, 2].

FIGURE 2-2.

Two strokes from a point 
x to its image y.
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of points all sharing the same number of preimages. We denote 
these zones by:

•  (all points having no preimages)

•  (all points having exactly one preimage)

•  (all points having two distinct preimages)

and so on.

These are called the layer sets of the map; those sets that are 
nonempty and open (that is, have no boundary points) are called 
multiplicity zones. The zones  and  are shown in Fig. 2-5. 
They exhaust the whole interval I = [_2, 2] except for the point 0, 
which separates the two zones. We also say this map is of type  – 

, meaning there are two zones, one of multiplicity zero, the other 
of multiplicity two. The suffix indicates the multiplicity. The inter-
val , may be considered a folded image, that is, two halves of the 
domain I are folded onto this image. For each half of the domain, 
our map does have an inverse. These are called partial inverses.

The point 0 is the only point of  in this example; that is, it has 
multiplicity one (its unique preimage is 0). It is called a critical 
point because it lies on the boundary of two zones. In fact, we can 
describe this map as a nonlinear folding. That is, the map folds the 
horizontal axis at the critical point, then stretches them in a nonlin-
ear fashion onto the range interval. This is why the critical point is 
sometimes called a fold point.

Generally, we will be interested in relatively simple maps, such 
as polynomials, in which only finite multiplicities, with generic 
(that is, typical) fold points, are encountered. We call these finitely 
folded maps. For example, a typical cubic map has multiplicities 1 
and 3, and we say it is of type  –  – . These basic concepts 
of iteration theory should be approached through a careful study of 
simple (for example, polynomial) examples.

Z0

Z1

Z2

Z0 Z2

Z0
Z2

Z2

Z1

Z1 Z3 Z1
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FIGURE 2-3.

Two strokes from a point 
y to its preimage of rank 
1.

FIGURE 2-4.

Finding all preimages of 
rank 1 of a point y.
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2.3 TRAJECTORIES AND ORBITS

A map generates a discrete dynamical system by iteration. That 
is, the map is applied again and again, and points move along a dot-
ted path called a trajectory. For example, choosing an initial point 

, let  denote its image under the map f, likewise  the image 
of , and so on. The infinite sequence ( , , ,...) is the trajec-
tory of . This sequence may jump around a finite set of points. 
The minimum set of points which holds a trajectory its called its 
orbit. When finite, an orbit is called cyclic, or periodic, and the 
number of its points is its order. A fixed point, defined by f(x) = x, is 
a special kind of periodic point, the orbit of which is a single point. 
It has order 1. If an orbit contains only two points, it is called a 2-
cycle, and so on.

We now describe a graphical method for plotting trajectories, 
called the Koenigs-Lemeray method. Note that in our graphs, both 
axes represent the same set, since the domain and range of our map 
consist of the same interval.

Given , envisioned on the horizontal axis, we may find  on 
the vertical axis by the two-stroke method described in 2.1. Next, 
we must repeat this process, starting from the point  on the hori-
zontal axis. Our immediate problem, then, is to transfer the distance 

 from the vertical axis to the corresponding distance on the hori-
zontal axis. 

One way to carry out this transfer is shown in Fig. 2-6. Here we 
use a compass to measure the vertical distance, , and rotate it to 
the horizontal distance, . Another method is to use a protractor to 
construct a line descending at slope -1, or 45 degrees, as shown in 
Fig. 2-7.

Yet another method — and this is the one we prefer — is shown 
in Fig. 2-8. We draw a line from the lower left corner, ascending at 
slope 1. This line is called the diagonal (in symbols, ). Now, using 
only a square, we draw a horizontal line from  on the vertical axis 
until it meets , then draw a vertical line until it meets the horizon-

x0 x1 x2
x1 x0 x1 x2

x0

x0 x1

x1

x1

x1
x1

∆
x1

∆
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FIGURE 2-5.

The multiplicity zones 
for a quadratic function 
on [-2, 2].

FIGURE 2-6.

The compass 
construction.
BASIC CONCEPTS IN 1D 17



-2

-1

0

1

2

-2 -1 0 1 2

x
1

x 1

x 1

x1

∆

-2

-1

0

1

2

-2 -1 0 1 2
FIGURE 2-7.

The descending line 
method.

FIGURE 2-8.

The square two-stroke 
method.
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tal axis. This determines the horizontal distance, , as shown in 
Fig. 2-8.

The entire construction from horizontal  to vertical  to hor-
izontal  may now be summarized as follows:

• vertical from horizontal axis to graph,

• horizontal from graph to vertical axis,

• horizontal from vertical axis to diagonal,

• vertical from diagonal to horizontal axis.

This construction may be abbreviated somewhat since the third 
stroke retraces (undoes) part of the second, as shown in the four 
strokes of Fig. 2-9. The abbreviated construction (Fig. 2-10) is:

• vertical from horizontal axis to graph,

• horizontal from graph to diagonal,

• vertical from diagonal to horizontal axis.

This is the three-stroke graphical method for plotting one step 
of a trajectory within the horizontal axis. When we proceed to plot 
the point  by this method, however, we find a further opportunity 
for abbreviation. The last stroke above, which locates  on the hor-
izontal axis, i.e.,

• vertical from diagonal to horizontal axis,

is followed by the first stroke of the second step,

• vertical from horizontal axis to graph,

which may be combined into a single stroke,

• vertical from diagonal to graph.

Thus the iterated sequence, beginning with  on the horizontal 
axis, is:

• vertical from horizontal axis to graph,

• horizontal from graph to diagonal,

• vertical from diagonal to graph,

x1

x0 x1
x1

x2
x1

x0
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FIGURE 2-9.

The four strokes from a 
point on the horizontal 
axis to its image on the 
horizontal axis.

FIGURE 2-10.

The abbreviated three-
stroke method.
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FIGURE 2-11.

One step, consisting of 
two strokes on the 
diagonal.

FIGURE 2-12.

The staircase method of 
Koenigs and Lemeray.
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and continue. After the first step, we may pretend that we are jump-
ing about on the diagonal, which after all is just another copy of the 
domain interval I. Each step has two strokes, 

• vertical to the graph; horizontal to the diagonal

(which we may remember by the mnemonic, vertigo-horrid), as 
shown in Fig. 2-11. That is the graphical method of Koenigs-Lem-
eray, also known as the staircase method, or cobweb construction. 
Using it, we may quickly follow trajectories for several jumps on 
the diagonal. See Fig. 2-12.

Using this method, one may graphically verify this useful fact: 
if a point returns to its starting point after two iterations of the map, 
the starting point is either a fixed point or a 2-periodic point of the 
map.

2.4 ATTRACTORS, BASINS, AND BOUNDARIES

Try out the staircase method using the Myrberg map,1 
, with the entire real line as the domain, and various 

values for the control parameter, c. You may quickly find that some 
trajectories converge to a fixed point, while others run off to positive 
infinity (upper right) on the diagonal. The fixed points are seen 
immediately as the crossing points of the graph and the diagonal, 
and are defined by the property: f(x) = x.

An interval is called trapping if it is mapped into itself, and 
invariant if it is mapped exactly onto itself. If a bounded interval is 
trapping, then all of its trajectories are trapped inside, and must 
converge to a closed, invariant, and bounded limit set. These limit 
sets are the attractors of the map. Attractors may be classified in 
three categories: 

• a point attractor is a single point,

• a cyclic attractor is a finite set of points, and

1.  Myrberg was one of the first to study the bifurcation sequence of this map. See the Bib-
liography for references to his work.

f x( ) x2 c–=
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• a chaotic attractor is any other type of attractor.1

The basin of an attractor is the set of all points tending to that 
attractor. The domain is decomposed into the basins of different 
attractors, including the basin of infinity, which consists of all 
points whose trajectories run away from any bounded set.

The boundaries of the basins, also called frontiers or separa-
trices, are of primary importance in dynamical systems theory. A 
detailed study of a map results in a portrait, in which the domain is 
decomposed into basins, one attractor shown in each. 

2.5 BIFURCATIONS

As in the Myrberg map, , we frequently encoun-
ter maps which depend on a parameter. As the parameter is 
changed, the portrait of the attractive set of the map may change 
gradually and insignificantly; however, as certain special values of 
the parameter are crossed, there may be a sudden and significant 
change in the portrait of the map. These special values are called 
bifurcation points, and the sudden changes in the portrait are called 
bifurcations. At the present time, dynamical systems theory does 
not have a satisfactory and rigorous definition of bifurcation, but the 
subject is now evolving through the study of examples. In fact, the 
goal of this book is to describe some of these examples, in a two-
dimensional context. 

In the current one-dimensional context, we again have the bene-
fit of an excellent visualization device, the response diagram. In the 
case of a single control parameter, this is a two-dimensional graphic 
in which the vertical axis represents the domain of the map and the 
horizontal axis represents the control parameter. Above each point 
on the horizontal axis, the portrait of the corresponding map is indi-
cated, with its attractors, basins, and basin boundaries. For a one-
parameter family of maps of a two-dimensional domain, the 
response diagram is three-dimensional, as we will soon see.

1.  This reflects the fact that different definitions of chaos abound in the literature.

f x( ) x2 c–=
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2.6 EXEMPLARY BIFURCATION

The simplest bifurcations are the fold and the flip. These may 
involve changes to any kind of attractor. To introduce the basic con-
cepts of bifurcation theory, however, we will describe the fold 
bifurcation in the simplest case, which involves point attractors.

The fold bifurcation is a catastrophic bifurcation. This means 
that, as the control parameter varies, an attractor appears or disap-
pears suddenly. In this event, as shown in Fig. 2-13 with the control 
parameter moving to the right on the horizontal axis, a fixed point 
appears, and immediately separates into a pair of distinct fixed 
points. One is an attractor, the other, a repellor. The repellor is 
shown below the attractor. Points between the two fixed points are 
attracted to the upper fixed point, and repelled by the lower fixed 
point. These tendencies are indicated by the arrows in Figures 2-15 
to 2-17.

To understand the mechanism of this bifurcation, we now turn 
to a specific example, the Myrberg family of maps, . 
The graph of a map of this family is an upward-opening parabola, 
with the vertex on the vertical axis at distance c below the horizon-
tal axis. As c increases, the parabola moves downward. Three cases 
of this graph are shown in Figs. 2-14, 2-15, and 2-16. 

In the first case, Fig. 2-14, with c = – 0.5, the parabola does not 
meet the diagonal because for this value of c, there are no fixed 
points. All trajectories tend upward without bound, to infinity.

In the next case, Fig. 2-15, with c = – 0.25, the parabola meets 
the diagonal in a single point, which is the fixed point x = 0.5, corre-
sponding to this value of c, the bifurcation value. Trajectories 
approach from below, but depart from above.

In the last case, Fig. 2-16, with c = 0, the parabola cuts the diag-
onal in two points, the fixed points x = 0 and x = 1, which are, 
respectively, an attractor and a repellor.

f x( ) x2 c–=
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FIGURE 2-13.

The response diagram of 
a fold bifurcation. The 
state space, where the 
dynamics occur, is verti-
cal. The control 
parameter, c, is horizon-
tal. The parabolicoid 
curves locate the fixed 
points of the maps. The 
bifurcation occurs, in the 
Myrberg example, when 

c = –0.25.

FIGURE 2-14.

A typical member of the 
Myrberg family, before 
the fold bifurcation. The 
graph of the map is 
entirely above the diago-
nal, so there are no fixed 
points.
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At the fold bifurcation. 
The graph of the map 
has made contact with 
the diagonal at a single 
fixed point.

FIGURE 2-16.

After the fold bifurca-
tion. The graph now 
meets the diagonal in 
two points, both fixed.
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The flip is a subtle bifurcation. This means that, in contrast to 
catastrophic and explosive bifurcations, its effect is too subtle to 
observe at the moment of bifurcation when the control parameter 
passes its critical value, but becomes apparent later, as the parame-
ter continues to increase. In the flip, a point attractor loses its 
attractiveness. From it is emitted a cyclic attractor of period 2. 

A response diagram of this event is shown in Fig. 2-17. To the 
left of the bifurcation value of the control parameter (horizontal 
axis) there is a single fixed point, and it is an attractor, FP+. The 
attraction in the vertical state space is shown by the heavy arrows. 
To the right, there is still only one fixed point, but it is a repellor, 
FP-. But there is also a 2-cycle, which is attractive, 2P+. Looking 
only at the attractors in the picture, we see that the attractive point 
has been replaced by an attractive 2-cycle, as the control parameter 
moves to the right. At first, the two points of this 2-cycle are very 
close together, then they gradually separate.

We now move on to two dimensions.
FIGURE 2-17.

The response diagram of 
the flip bifurcation.
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CHAPTER 3

BASIC CONCEPTS IN 2D

The basic concepts named in the Introduction, and described in 
the preceding chapter in a 1D context, apply with little modification 
in the 2D context which is our main concern in this book. We no 
longer have the convenience of a visible graph of the map, however, 
because the graph of a 2D map is a 2D surface in a 4D space. 
Therefore, we must be satisfied with a frontal view of the 2D 
domain of the map, in which we try to visualize as much as 
possible.

3.1 MAPS

As before, by map we mean a continuous function from the 
domain to itself, . From now on, the domain will be a two-
dimensional subset, usually an open subspace, of the plane. For 
example, D might be an open rectangle (that is, not containing its 
boundary) or the whole plane. The images and preimages of a point, 
the one-to-one property, and noninvertibility are defined as in 2.1. 
We now consider noninvertible maps, in 2D.

Note: The complex number maps familiar from the fractal theo-
ries of Fatou, Julia, Mandelbrot, and others may be regarded as real 
2D maps. Thus, they fit in the context of this book.

3.2 MULTIPLICITIES AND CRITICAL CURVES

In the context of a given map, we define the layer set, , as the 
set of points having exactly n preimages of rank 1, where n is a nat-

f :D D→

Zn
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ural number: 0, 1, 2,..., and so on. Those layer sets that are 
nonempty open sets are the multiplicity zones. Points on the bound-
aries of the zones, generally, are critical points of the map. In 
general, these sets will not exhaust the domain, as there may be 
points that have infinitely many preimages of rank 1, and thus do 
not belong to  for any n. Even polynomial maps may have this 
problem, but generic (that is, almost all) polynomial maps have the 
following nice properties: 

• there are only a finite number of layer sets;

• they exhaust the domain;

• the zones of multiplicity fill almost all of the domain;

• all layer sets that are not multiplicity zones consist of criti-
cal points, arranged in a set of piecewise smooth curves.

A map having these nice properties is called a finitely folded 
map, and a curve consisting of critical points is called a critical 
curve of rank 1, and is denoted by L.1 The image of a critical curve 
of rank 1 is a critical curve of rank 2, denoted , and so on. 

Note: For a given map T, , where  is the criti-
cal curve of rank 0, and may be thought of as the set of “coincident 
preimages” of points of L. 

3.3 AN EXAMPLE

For example, let D be the entire plane. The polynomial map 
 defined by f(x, y) = (u, v), where,

(EQ 3)

is finitely folded. We will set a = – 0.7, and b = 1.0.

1.  In the original literature, L is usually denoted by LC, for the French term, ligne critique. 
More rigorous definitions may be found in Appendix 3. 

Zn

L1

L T L 1–[ ]= L 1–

f :D D→

u ax y+=

v b x
2

+=
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Figure 3-1 shows part of the domain of the map, the (x, y) space 
D, containing the critical curve of rank 0, , which coincides 
with the y axis. It divides the domain into two regions, denoted  
and . Figure 3-2 shows part of the image of the map f, in the (u, 
v) space, with the zones of multiplicities zero and two,  and , 
separated by the critical curve, L. Figure 3-3 shows the two spaces, 
superimposed.

There is a folding of the (x, y) space, on the critical curve of 
rank 0, , followed by a nonlinear deformation, a rotation, and a 
movement to the right, into the space of (u, v). The entire (x, y) 
space ends up on the zone , with the critical curve  moving 
onto the critical curve, L. We may visualize the two regions of the 
(x, y) space,  and  folded onto one another, then distorted and 
pressed down onto . Actually, the two regions mapped are onto 
one.

The motion, visualized in this way, may be reversed. This pro-
vides a method to visualize the action of the inverse mapping as 
well. A small area in the (u, v) space on the right, if contained 
entirely within , will unfold into two small regions in the (x, y) 
space on the left, one in the region , the other in .

As we wish to iterate the map, and to visualize the trajectories, 
attractors, and basins, of our discrete dynamical system, it will be 
useful (although initially confusing) to superimpose the (u, v) space 
on top of the (x, y) space. Then, as a weak substitute for the graphi-
cal method of Koenigs-Lemaray in the 1D case, we apply the 
motion from Fig. 3-1 to Fig. 3-2 again and again. The domain, D, is 
mapped into itself repeatedly. The curve  moves onto the curve 
L, which in turn moves onto the curve , and so on. This superim-
position is shown in Fig. 3-3. This portrait is the basis of the method 
of critical curves, which is the main method of this book.

L 1–
R1

R2
Z0 Z2

L 1–

Z2 L 1–

R1 R2
Z2

Z2
R1 R2

L 1–
L1
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FIGURE 3-1.

The domain of (x, y) 
divided by the critical 
curve, x = 0.

FIGURE 3-2.

The range of (u, v) 
divided by the critical 
curve, v = b = 1.0. The 
image of the map is 
above L. 
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3.4 TRAJECTORIES AND ORBITS

In the 2D context, trajectories and orbits are defined exactly as 
in 2.3,. but here they must be plotted in the two-dimensional 
domain. This is particularly appropriate for computer-generated 
plots. And in this computational method, the attractors and their 
basins may be discovered by experiment. We usually find the criti-
cal curve of rank – 1 manually by the standard method of vector 
calculus (involving the vanishing of the Jacobian determinant, see 
Appendix 3), then enter its symbolic description into the computer 
program, which can then plot the higher-order iterates. The method 
of critical curves is based on experiments such as this.

As in the 1D case, there are special kinds of orbits which are 
important qualitative features of the dynamics of an iterated map. 
First among these are the fixed points, which are unmoved by the 
map. The different types of fixed points are defined by the motions 
of nearby points. The classification is based on the differential cal-
FIGURE 3-3.

The image of the map, 
superimposed on the 
domain.
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culus and linear algebra of two-dimensional spaces, but we will 
give here only the results. Excepting certain unusual cases, there are 
five kinds of so-called generic fixed points in this classification. The 
five types are illustrated in Figs. 3-4 to 3-8. 

Another special type of orbit of great importance in the qualita-
tive theory is the periodic orbit, or cyclic orbit, or cycle, which 
consists of a finite set of points. The map permutes the points of the 
orbit cyclically: If there are n points in the orbit, each of the points 
returns to its original position after exactly n iterations of the map. 
The number n is called the period of the orbit, which is also called 
an n-cycle. A point of an n-cycle is said to have prime period n, and 
is also a fixed point of the map iterated n times. Periodic points are 
classified according to their type as a fixed point of the iterated 
map. 
-2

-1

0

1

2

-2 -1 0 1 2
FIGURE 3-4.

Attractive focus. All 
nearby points are 
attracted and spiral 
toward the fixed point.
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FIGURE 3-5.

Attractive node. All 
nearby points are 
attracted, and tend to 
approach along a curve 
through the fixed point.

FIGURE 3-6.

Saddle. A repellor, most 
nearby points are 
attracted, and then 
repelled along a curve 
through the fixed point.
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FIGURE 3-7.

Repelling node. All 
nearby points are 
repelled, and tend to 
depart (at least briefly) 
along a curve through 
the fixed point. The 
opposite of an attractive 
node.

FIGURE 3-8.

Repelling focus. All 
nearby points depart, 
spiralling away from the 
fixed point. The opposite 
of an attractive node.
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3.5 ATTRACTORS

As in the 1D case, there are three types of attractors:

• static attractors, also called attractive fixed points;

• periodic attractors, also called cyclic attractors; and

• chaotic attractors.

The static attractors are fixed points which are attractive, that is, 
the trajectories of all nearby points are attracted to them. Of the five 
types of fixed points illustrated in Figs. 3-4 to 3-8, two are attrac-
tive, and three repelling. Periodic attractors are periodic orbits 
(orbits of trajectories that cycle around a finite point set) which are 
attractive.

Chaotic attractors are more complicated sets which are attrac-
tive. For the mathematically inclined, technical definitions are given 
in Appendix 2. For others, these concepts will gain meaning 
through examples later in the book.

3.6 BIFURCATIONS

The informal definition of bifurcation, in 2D, is the same as in 
1D. Again, there are subtle and catastrophic bifurcations, and other 
distinctions such as local versus global bifurcations. These are best 
understood in the examples dissected in detail in the following 
chapters.

In the 2D context, a one-parameter family of maps may be dis-
played in a response diagram, in which the bifurcations may be 
seen and analyzed. This is a 3D plot in which the domain of the 
maps, a 2D set, is arrayed vertically, and moved along a horizontal 
axis representing the control parameter. In each of these vertical 
planes, the portrait of attractors, basins, and boundaries must be 
visualized. In practice, this is a challenging task of computer graph-
ics, and we usually seek a simpler display. The technique we adopt 
for this book, which is well accommodated by computer graphic 
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animation technology and CD-ROM media, is the animated movie. 
Thus, we translate the control parameter into the time dimension 
and view the domain of the map head on, watching the attractor-
basin portrait adjust itself to a time-changing control parameter.

The method of characteristic curves becomes a strategy for the 
analysis of these bifurcation movies. So, on to the exemplary bifur-
cation sequences.
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CHAPTER 4

ABSORBING AREAS

We begin with a brief introduction to the concept of absorption 
in one and two dimensions, and then study an exemplary bifurca-
tion sequence.

4.1 ABSORBTION CONCEPTS, 1D

We introduced in Chapter 2 the notions of critical points, which 
bound zones of multiplicity, and trapping intervals, which are 
mapped into themselves. These notions come together in the con-
cept of an absorbing interval. This is an interval in the domain of 
the map which is trapping, is bounded by critical points, and is 
super-attracting, which means that every point sufficiently close to 
the critical endpoints will jump into the absorbing interval after a 
finite number of applications of the map.

In the context of an iterated map of an interval, the interesting 
dynamics take place within absorbing intervals. The critical points 
of a one-dimensional map determine absorbing intervals, and are 
useful in characterizing some bifurcations, especially those called 
global bifurcations. Examples of global bifurcations occur in Chap-
ter 7.

4.2 ABSORBTION CONCEPTS, 2D

In two-dimensional iterations, we have a notion of absorbing 
area, generalizing the absorbing intervals of the one-dimensional 
case. The critical curves of a map of the plane play a role analogous 
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to that of the critical points of a one-dimensional map: they are use-
ful in determining absorbing areas. We will now illustrate the role 
of critical curves in determining these important areas in which the 
interesting dynamics occur.

In this chapter we will study the first family of quadratic maps 
defined in the Introduction. We will now use the map of this family 
determined by b = – 0.8 to illustrate the use of critical curves to 
determine an absorbing area. 

Our map has two fixed points, P and Q. The basic critical 
curve, L, is the locus of points with “coincident preimages,” that is, 
the set of points having nearby points with different numbers of 
preimages or rank 1 (see Appendix 3, especially A3.2 – A3.3, for 
definitions). The fundamental critical curve  is defined as the 
preimage of L. Thus, L is the image of  under the map. Simi-
larly, the derived critical curve  is the image of L, and so on. All 
of these are called critical curves, as described in Chapter 2.

Note for those who have studied vector calculus: In the context 
of a generic smooth map, the fundamental critical curve  will be 
a subset of the set of critical points in the Jacobian sense, points at 
which the Jacobian derivative of the map (a linear transformation) 
is degenerate (not a linear isomorphism), while the basic critical 
curve L is a subset of the set of critical values in the Jacobian sense. 
Inflection points are Jacobian critical points which do not belong to 

.

For this particular map,  is the vertical axis, x = 0, and L is a 
horizontal line, y = b = – 0.8. It will be convenient to choose a 
bounded interval in , , with endpoints , which is the ori-
gin (0, 0), and , which is the image of  under the map, the 
point (0, – 0.8). 

Note: The critical curve denoted by L in the text is denoted by 
 in the figures.

Figure 4-1 shows all these features and more. Note the points 
 and , and the segments of , L, ,..., . As the map 

moves  to L, and the point  to , L is moved to , and the 

L 1–
L 1–

L1

L 1–

L 1–

L 1–

L 1– S 1– a 1–
a0 a 1–

L0

a 1– a0 L 1– L1 L4
L 1– a 1– a0 L1
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a=0.7    b=-0.8
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-1

L0

 a4
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2 a L

 b0

0 a

-1 a
point  to a point  in . The transversal1 (and here, indeed, 
orthogonal) crossing of  and L at  is transformed into a tan-
gent contact of L and  at . Then this point is mapped to a 
tangency of  and  at , and so on. Note that the curve  
crosses  at the point , so  is tangent to L at the point , the 
image of , and so on. Similarly, the curve  crosses  at the 
point , so  is tangent to L at , the image of , and so on.

It is worthwhile to pause here and carefully study Figure 4-1. A 
point of transversal crossing of any curve, C, through  is 
mapped into a point of tangency of the image of that curve, f(C), 
with L. This is because of the folding which occurs as  is 
mapped onto L. Also, a point of tangency of a curve C to the curve 

 is mapped into a point of tangency of the image curve f(C) and 
L. 

1.  An intersection of two curves is said to be transversal if they cross cleanly through each 
other in a single point, and are not tangent to each other.

a0 a1 L1
L 1– a0

L1 a1
L1 L2 a2 L2

L 1– p0 L3 p1
p0 L3 L 1–

b0 L4 b1 b0

L 1–

L 1–

L 1–
FIGURE 4-1.

An absorbing area 
bounded by critical 
curves.
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The action of the map may be visualized as a nonlinear folding 
of the plane at the fundamental critical curve, , followed by a 
nonlinear rotation moving  to L around the point , and a non-
linear translation horizontally along L, so that  ends up at . 
The critical curves shown in Fig. 4-1 are a kind of skeleton of the 
map, as we shall see.

Our next goal is to use these critical curves to discover an 
absorbing area of the map. By definition (see Appendix A3.5), an 
absorbing area is a region of the plane such that: 

• it is mapped into (or onto) itself;

• its boundary is made up of segments of critical curves, or of 
limit points of an infinite sequence of critical curves; and

• it has a neighborhood every point of which eventually 
moves into the absorbing area.

As an example, note in Fig. 4-1 that the arcs  of L,  of 
,  of ,  of , and  of  bound a region d’, 

L 1–
L 1– a0

a 1– a0

b1a1 a1a2
L1 a2a3 L2 a3a4 L3 a4b1 L4
FIGURE 4-2.

An annular absorb-
ing area bounded 
by critical curves.
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shown shaded in Fig. 4-1. This shaded region happens to be an 
absorbing area! First of all, it is invariant. For example, the segment 

 of  is on the boundary of the region, d’, but the image of 
this arc, , is internal to d’. This is clearly shown in Fig. 4-2, in 
which the image of  is indicated in . 

Also, d’ is absorbing: A point external to  is mapped into  
in a finite number of iterations, as shown in Fig. 4-3, and this is the 
case for all points sufficiently near to . 

Figure 4-2. also shows a shaded area, , bounded by the criti-
cal curve segments introduced in Fig. 4-1. It surrounds a hole, W, in 
which the fixed point Q is located. This is a smaller absorbing area, 
and is called an annular absorbing area for obvious reasons. Gen-
erally, absorbing areas may be topologically more complex, with 
many holes, and with many separate pieces.

Absorbing areas must contain attractors. One, d, is shown as a 
cloud of dots in Fig. 4-3. It is the attracting set of , and of the 
smaller absorbing area, , as well. 

Usually there are smaller and smaller absorbing areas around 
any attractor of the map. All these, by definition, are bounded by 
critical arcs. And as they get smaller and smaller, but always 
enclose the same attractor, it is to be expected that the attractor 
itself is bounded by critical arcs, or by limit points of infinite 
sequences of critical arcs. Figure 4-4. shows 25 iterates of two 
intervals of , the two pieces of . These iterates bound 
the attractor shown in Fig. 4-3 quite closely.

Another basic concept of dynamics is the basin of attraction of 
an attractor. In the method of critical curves, we usually determine 
an absorbing area by the method illustrated above, and thus the 
attractor within it, and then determine the basin of attraction of the 
absorbing area. In Fig. 4-5 the basin of attraction, D( ), is shown 
as the white region. Its boundary is made up of the repelling (nodal) 
fixed point, P, the saddle 2-cycle { , }, and its insets.1 The 
points of the gray region go off to infinity. That is, their trajectories 

1.  By inset of P we mean the set of points attracted to P, also called the stable set of P.

a4b1 L4
a5b2

a4b1 L5

d ′ d ′

d ′
d ′a

d ′
d ′a

L 1– d L 1–∩

d ′

Q1 Q2
ABSORBING AREAS 45



d

Q

P

Q

1

2

4

0

1

L2

L

L-1

L

L

3

L

a=0.7    b=-0.8

Q

4 a

3 a

-1 a

a=0.7    b=-0.8

Q
2 a

1 a 0 a
FIGURE 4-3.

The attractor within 
the annular absorb-
ing area.

FIGURE 4-4.

Critical curves con-
verging to the 
boundary of the 
attractor.
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are unbounded. We call this set the basin of infinity, D( ). The 
white area D( ) (excluding the fixed point Q and its rank 1 preim-
age  in ) is the basin of the attractor d.

∞
d ′

Q 1– Z0
FIGURE 4-5.

The attractor in its 
basin.
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4.3 EXEMPLARY BIFURCATION SEQUENCE

In this first exemplary bifurcation sequence, we use the first 
family with a = 0.7, and decrease b from – 0.4 to – 1.0, in seven 
stages.1 For these values of b, our map always has two fixed points, 
P and Q, given by:

P: , 

Q: , 

where . Also, there is a 2-cycle, { , }.

Stage 1: b = – 0.4 

Here, the point Q, at about (– 0.5, – 0.15), is an attractive fixed 
point. As b decreases, a Neimark-Hopf bifurcation occurs. The 
fixed point Q becomes a repellor and the curve  appears as an 
attractive invariant cycle,  (a closed curve mapped onto itself) that 
gradually increases in size as b continues to decrease.

Stage 2: b = – 0.5 

In Fig. 4-6, we see the point repellor Q within the attractive 
cycle , and surrounding that, our first absorbing area, , shown 
shaded in Fig. 4-7. This area is mapped into itself, is bounded by 
arcs of critical curves, and is attractive (see Appendix 3.5 for the 
precise definition). In this case, the absorbing area is bounded by 
the arcs of the critical curves, L, , , , and . These bound-
ing arcs are generated by successive iterations of the map, as we 
now describe.

1.  We follow the paper BB.

x
1 a– δ+( )

2
------------------------------= y 1 a–( )x=

x
1 a– δ–( )

2
------------------------------= y 1 a–( )x=

δ 1 a–( )2 4b–= Q1 Q2

Γ
Γ

Γ d ′

L1 L2 L3 L4
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FIGURE 4-6.

FIGURE 4-7.
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Notice in Fig. 4-7, which shows the critical arcs in more detail, 
that  and L are straight lines, crossing orthogonally in one point. 
Let  denote this point, (0, – 0.5). Since it belongs to L, it has a 
unique preimage, , in . In this case  is the origin (0, 0).

Keeping the interval  in mind, we now draw the succes-
sive images of the halfline of  issuing from  and containing 

, that is, issuing downwards. The fourth image, lying within , 
crosses the interval , as shown in Fig. 4-7. At this event our 
constructive procedure ends, we have found an absorbing area, 
shown shaded in this figure. Further successive images of the seg-
ment converge on , as shown in the blowup, Fig. 4-8. This 
procedure may be called Procedure 1. A related procedure is illus-
trated in the next stage.

As b continues to decrease,  expands further and eventually 
crosses .

L 1–
a0

a 1– L 1– a 1–

a 1– a0
L 1– a 1–

a0 L3
a 1– a0

Γ

Γ
L 1–
FIGURE 4-8.
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Stage 3: b = – 0.6 

In this case  crosses  in the two points  and . as 
shown in Fig. 4-9. The wavy shape of  is a consequence of this 
crossing, and may be understood as follows. 

Apply the map to the configuration shown in Fig. 4-9. The 
points  and  are mapped into the points  and , also on . 
The straight line segment of  between  and  is mapped into 
the straight line segment of L between  and . Because the map 
folds the plane two-to-one while moving  to L, the curved seg-
ment of  between  and  is carried into the curved segment of 

 between  and , which is above the line L. The transversal 
crossings of  through the line  are mapped into tangencies of 

 with L at the points  and . These tangencies are shown 
clearly in the enlargement, Fig. 4-10. This is a universal property of 
curves crossing : All crossings are mapped into tangencies, or 
contacts, because the map folds the plane at  and maps the two 
sides of  onto just one side of L. Hence,  obtains a wave from 
the image of its segment which has crossed . 

Another effect of these tangencies is that  is now tangent to 
the boundary of the absorbing area  identified in Stage 2 above, 
as shown in Fig. 4-11. This absorbing area may be found by the fol-
lowing method, called Procedure 2.

Consider the straight line segment  from  to  in  as 
above, and construct its successive images  by repeated 
applications of the map, until the first crossing with , in the 
point . See that the first image of , , is a straight line seg-
ment from  to  in L. The second image, , is a wave from  
to  in , likewise  in ,  in , and  in . But  
crosses , and thus  is found. Let  denote the straight line 
segment from  to  in . Then  contains the segment  
constructed just above, and its image  is a straight line segment 
from  to  in L, containing . Now the curve segments , , 

, , B enclose the absorbing area d’, where B is the curve seg-
ment from  within  and , as shown in Fig. 4-12. 

Γ L 1– p0 q0
Γ

p0 q0 p1 q1 Γ
L 1– p0 q0

p1 q1
L 1–

Γ p0 q0
Γ p1 q1

Γ L 1–
Γ p1 q1

L 1–
L 1–

L 1– Γ
L 1–

Γ
d ′

S 1– a 1– a0 L 1–
am am 1+

L 1–
b0 S 1– S0

a0 a1 S1 a1
a2 L1 S2 L2 S3 L3 S4 L4 S4

L 1– b0 A 1–
b0 a0 L 1– A 1– S 1–

A0
b1 a1 S0 A0 S1

S2 S3
a4 b1 S4 L4
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annular
- inside

a=0.7    b=-0.6

Γ

area
absorbing
At this stage, we may see yet another absorbing area, which is 
annular in shape. That is, it has a hole. This is shown bounded by 
shaded curves in the enlargement of Fig. 4-13. Its boundary is con-
structed of successive images of the straight line segment  from 

 to  in . The attractive invariant curve, , is tangent to the 
external boundary of this annular absorbing area, as well as to its 
interior boundary.

As b decreases further, many bifurcations occur in the dynamics 
within these absorbing areas. Probably they have not all been dis-
covered, but we show just a few events in the remaining figures of 
this chapter.

A 1–
b0 a0 L 1– Γ
FIGURE 4-13.
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Stage 4: b = – 0.72 

At this stage there is an attractive periodic cycle of period 11. 
The points of this cycle are labelled in iteration sequence in Fig. 4-
14. This 11-cycle persists as b decreases further, through very many 
more bifurcations. The movie on the CD-ROM reveals an astonish-
ing number of these, and many more have been observed, even in 
an interval of b values as narrow as 0.001.
11

10

9 8

6

5

4 1

a=0.7    b=-0.72

FIGURE 4-14.

The attractive 11-
cycle. Note the per-
mutation sequence 
indicated by the 
numbers.
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Stage 5: b=–0.78

At this stage we find two attractors coexisting within the 
annular absorbing area, a 28-cycle and an 11-piece chaotic 
attractor. These are shown in Fig. 4-15. Near b = 0.798, there is 
an explosion to a chaotic attractor filling an annular absorbing 
area.
1

P

a=0.7    b=-0.78

Q

Q

FIGURE 4-15.

The 11-cyclic cha-
otic attractor. The 
permutation of the 
pieces follows the 
numbering of Fig. 
4-14.
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Stage 6: b = – 0.7989995 

Fig. 4-16 shows the chaotic attractor, bounded by critical 
curves. Passing below b = – 0.8, there are a number of additional 
bifurcations which have been studied on the research frontier. Some 
of them will be described later in this book. Approaching b = – 1.0, 
further explosions are found.
a=0.7    b=-0.7989995
FIGURE 4-16.
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Stage 7: b = – 0.975 

The densely dotted region of Fig. 4-17 is a large chaotic attrac-
tor, an annular chaotic area, d. The frontier, F, of its basin of 
attraction, includes the inset of the 2-cycle, { , }. The bound-
ary of d is very near F. This figure shows that the critical curves (on 
the boundary of the former chaotic area) are about to touch (and 
then to cross) the inset of the 2-cycle. 

The enlargement of Fig. 4-18 shows that, in addition, a contact 
of the frontier, F, with the boundary on L is about to occur. This 
contact bifurcation, described in Chapter 7, has the effect of 
destroying the chaotic attractor, or rather, of transforming it into a 
chaotic repellor. Now, almost all of the trajectories diverge to infin-
ity, except for a Cantor set surviving inside the former chaotic area.

A rough idea of the basin of infinity, D( ), is shown in Fig. 4-
19 as a black area. The basin of infinity includes infinitely many 
holes in the former absorbing area, d’, only a few of which are 
shown in this figure. The light area is the basin of attraction of the 
attractor d. An enlargement is shown in Fig, 4-20.

Q1 Q2

∞
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FIGURE 4-18.
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a=0.7    b=-0.975

FIGURE 4-19.

FIGURE 4-20.
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CHAPTER 5

HOLES

5.1 INTRODUCTION

We have already encountered holes in the Case 1 of the first 
map family treated at the end of the preceding chapter (see Fig. 4-
17). We now change the parameter a from 0.7 to 1.0, obtaining Case 
2 of the first map family, in which the bifurcations involving holes 
are somewhat clearer. This change eliminates the repelling 2-cycle, 
{ , }. As before, the fixed point Q becomes a repelling focus, 
but the fixed point P is now a saddle.1

The main qualitative features in the portrait of the iterations in 
this case are: a bounded absorbing area, d’, its basin of attraction, 
D(d’), the basin of attraction of infinity, D( ), and the boundary 
between these two basins, F, which consists of the saddle P and its 
inset.

As the parameter b decreases from zero, the fixed point Q 
becomes a repelling focus, giving rise to an attractive closed invari-
ant curve, , as before. As  crosses  there are several 
bifurcations and an annular absorbing area is obtained, bounded by 
a finite number of critical arcs, as before. Inside this annular 
absorbing area, a chaotic area appears. 

1.  See Figs. 3-4 to 3-8 to recall the meaning of these terms.

Q1 Q2

∞

Γ Γ L 1–
HOLES 61



                                 
5.2 EXEMPLARY BIFURCATION SEQUENCE

In this chapter we present a very informative bifurcation 
sequence, including some new phenomena, ideas and observations. 
We discuss some of these events now, as b decreases from 0.593 to 
0.600. We proceed in eleven stages. 

Stage 1: b = – 0.59300 

Using Procedure 2 as in the previous chapter, we find an absorb-
ing area , bounded by seven images of the straight line segment 

 of . This is the shaded area in Fig. 5-1. Note that the 
boundary of  includes arcs of  and .

Inside  there is also an attracting chaotic area, d, as shown in 
Fig. 5-2. Within  there is an annular absorbing area , which 
contains d, and is bounded by the iterates of the line segment  
of  shown in Fig. 5-1. This absorbing area is shown in Fig. 5-3, 
an enlargement is shown in Fig. 5-4.

These critical arcs also define the boundary of the chaotic 
attractor, shown in Fig. 5-5 as a densely dotted region. Note that the 
boundaries of  and d include arcs of  and , as shown in 
Fig. 5-4, and in fact the entire boundary of d may be defined by crit-
ical arcs.

The basin of attraction D( ) is shown in Fig. 5-6, in which the 
gray region denotes the basin of infinity, D( ), The boundary 
between these two basins, F, is smooth, and consists of the inset of 
the fixed saddle point, P.

Note the corners of the arc of  on the boundary of , shown 
in Fig. 5-1. This roughness does not occur for higher values of the 
bifurcation parameter, b, for which the boundary of  is smooth. 
The appearance of this arc gives the first tongue, a folding arc of a 
critical curve, creating roughness of the boundary. This roughness 
will increase as b continues to decrease, announcing the approach 
of a contact bifurcation.
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b0 a0 L 1–

d ′ L5 L6

d ′
d ′ d ′a

a0 b0
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d ′a L9 L10
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L6 d ′

d ′
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FIGURE 5-1.

The absorbing area, 
shaded, and 
bounded by arcs of 
critical curves.

FIGURE 5-2.

The attractor, 
densely dotted by 
an actual trajectory.
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FIGURE 5-3.

With two new seg-
ments.The annular 
absorbing area, 
shaded, and 
bounded by arcs of 
critical curves, the 
images of these two 
segments.

FIGURE 5-4.

An enlargement 
showing critical 
curves.
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FIGURE 5-5.

An enlargement 
showing the attrac-
tor bounded by 
critical curves.

FIGURE 5-6.

The attractor in its 
basin, shaded.
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Stage 2: b = – 0.59495 

This stage immediately precedes the first contact bifurca-
tion, a type of bifurcation treated in more detail later, in Chapter 
7. Figures 5-7 and 5-8, with 17 images of the segment , 
show many tongues in the absorbing area, d’.

The chaotic set, d, contains only part of these tongues, as 
shown in Fig. 5-9. The tongues of the boundary of d’ are 
approaching the inset of the saddle point, P, and thus the bound-
ary of the basin D( ). Note that  is close to F in Fig. 5-9.

Figure 5-10 shows a smaller annular absorbing area,  in 
, containing d. Figure 5-11 shows more detail. Figure 5-12 

shows that , and d inside it, are still far from the frontier, F, 
of the basin of attraction.
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FIGURE 5-7.

Six critical curves.

FIGURE 5-8.

Seventeen critical 
curves, enlarged, 
showing tongues.
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FIGURE 5-9.

The attractor, 
enlarged.

FIGURE 5-10.

The smaller annular 
absorbing area, 
defined by iterates 
of a reduced arc of 
a critical curve.
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An enlargement of 
the shorter critical 
arcs.

FIGURE 5-12.

A portion of the 
attractor and its 
basin, in the 
reduced annular 
absorbing area.
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Stage 3: b = – 0.594962

This stage is almost exactly the moment of the first contact 
bifurcation between the absorbing area, , and the frontier, F. Fig-
ure 5-13 shows that infinitely many tongues on the boundary of  
approach the fixed saddle, P, which lies on F. These tongues belong 
to images of the segment  of . Thus we have a contact 
between the boundary of the absorbing area,  and the boundary, 
F, of its basin, D. Figure 5-14 shows an enlargement near the fixed 
saddle.

In a further enlargement, Fig. 5-15, we see a point of contact, 
, between the boundary of  and F. The iterates of this point 

converge to the saddle, P, as shown in Fig. 5-16. And at each of 
these image points, the images of the two boundaries are tangent; 
that is, the ends of the tongues are tangent to the inset of the saddle, 
P.
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FIGURE 5-13.

The attractor, 
among critical arcs.

FIGURE 5-14.

An enlargement, 
showing portions of 
critical curves and 
basin. Note the 
tongues tangent to 
the inset of P.
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Further enlarge-
ment, showing a 
point of tangency.

FIGURE 5-16.

Iterates of the point 
of tangency con-
verging to P.
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Stage 4: b = – 0.59500 

This stage is immediately after the first contact bifurcation. Fig-
ures 5-17 and 5-18, are made of 18 iterates of the segment  of 

, where  is the intersection of  with  (see Fig. 5-1). 
They show that some points of the tongues, having crossed through 
the inset of P separating the two basins, now are attracted to infin-
ity. Thus, the area defined by Procedure 2 (see 4.3 above) is 
unbounded; infinite iterations are required to obtain an area which 
is absorbing. However, a smaller annular absorbing area, , con-
taining d, may be constructed.
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FIGURE 5-17.

Eighteen iterates of 
a critical segment.

FIGURE 5-18.

Enlargement show-
ing critical arcs and 
basin. Some 
tongues now cross 
the inset of P.
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Stage 5: b = – 0.59520 

This stage is also just after the first contact bifurcation. Because 
the frontier, F, is the inset of the saddle point, P, it is invariant under 
the inverses of the map, by definition.

Figure 5-19 shows that after the first contact bifurcation, holes 
(such as those labelled , , and ) appear in the basin of 
attraction D(d’). These holes belong to the basin of infinity.

Note that topologically, the basin of infinity is not connected. It 
has disjoint pieces, which are holes of the basin of . And this 
basin is not simply connected, as it has holes which belong to the 
basin of infinity.

This is how the holes appear. After this first contact bifurcation, 
the frontier F crosses L, creating the sector  bounded by F and L, 
as shown in the enlargement, Fig. 5-20. This sector constitutes a 
piece of the basin of infinity in the zone . Since the sector  
belongs to the basin of infinity, so too do all of its preimages. One 
of these, , is shown as a small shaded hole in Figure 5-19. It is 
in the zone . (The other, not shown, is in the zone .) The 
shaded holes  and  are the two first-rank preimages of the 
hole .

The sector  is bounded by an arc of , and an arc of L hav-
ing endpoints and . The first-rank preimage, , of the sector 
is composed of two areas joined by the arc  of . Thus 

 is connected and it is a hole, as shown in Figs. 5-19 and 5-20. 
We regard this as a main hole. All other holes are preimages of a 
main hole, and they converge to the points Q and .

We may regard F as the union of  and , where  consists 
of the boundaries of all the holes, and  is the rest of the boundary 
of D(d’).

For further analysis of bifurcations involving contact of F and 
L, see BB. We will just describe some of the events in our present 
context. As b continues to decrease, the holes increase in size.
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FIGURE 5-19.

The attractor and its 
basin.

FIGURE 5-20.

Enlargement, show-
ing the intrusion of 
the basin across the 
critical line. The 
domain of this 
enlargement is near 
the center of Fig. 5-
19.
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Stage 6: b = – 0.59600 

The preimage of  (first-rank preimage of ) has two parts, 
and previously (when b was higher) one of them (denoted by ) 
belonged to the region, , of points having no preimage. But now, 
as b decreases further, this preimage becomes tangent to L, which is 
the frontier between  and , and crosses through it into . 

This crossing is shown in Fig. 5-21. Thus a new set of holes is 
created, an infinite sequence of preimages of  disjoint from our 
previous system of holes. All these holes, old and new, get mapped 
eventually into the main hole, .

As b decreases further, the holes increase yet further in size.
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FIGURE 5-21.

The holes grow 
larger.
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Stage 7: b = – 0.59740 

In Fig. 5-22 we see the same holes as in the preceding stage, but 
they are wider. The hole , which belongs to the region , is 
close to the critical curve, L. 

See also the enlargement, Fig. 5-23.
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FIGURE 5-22.

The holes are even 
larger.

FIGURE 5-23.

An enlargement.
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Stage 8: b = – 0.59800 

After further decreases in the parameter b,  now intersects 
L, as shown in Fig. 5-24. Thus, we have passed another contact 
bifurcation, and we have a new system of holes, based on the hole 

. 

In the enlargement, Fig. 5-25, we see part of  in the zone 
, and its image under two iterates of the map lies in the part of 

 above the critical curve, . At the recent contact bifurcation, 
when  became tangent to L,  became tangent to , and 

 became tangent to . Thus this contact bifurcation changed 
the topology (that is, the density of holes) of both the basin D( ), 
and its annular absorbing area, . 

In Fig. 5-25, we see that the critical arcs of , , and so on, 
cross the frontier, . Before the recent contact bifurcation, these 
arcs defined the boundary of an absorbing area. Notice also in Fig. 
5-25 the hole , a preimage of the new hole which 
approaches the critical curve L from above, that is, from the zone 

. Now a new absorbing area exists, and in Fig. 5-26 we see that 
its boundary includes arcs of  and , without contacts with 

. 
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FIGURE 5-24.

A new system of 
holes perforates the 
basin of our 
attractor.

FIGURE 5-25.

Darker shading 
indicates the new 
tongues crossing 
into the basin of 
infinity.
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Stage 9: b = – 0.59820 

In Fig. 5-27, the hole  becomes tangent to L.H k–
H-k
FIGURE 5-26.

The new absorbing 
area, bounded by 
these critical 
curves.

FIGURE 5-27.

The hole has 
descended to L 
from above.
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Stage 10: b = – 0.59824 

In Fig. 5-28 the hole  crosses L. In this third contact bifur-
cation, we see holes rejoined, the inverse of the second contact 
bifurcation discussed in Stage 9. What had been two distinct holes 
(and their preimages) are now reunited, connected by a segment 
(and its preimages) in . This is marked “reunion” in Fig. 5-28, 
compare Fig. 5-24.

In the enlargements, Figs. 5-29 and 5-30, we can see images of 
critical arcs defining the boundary of the annular absorbing area, 

, and the chaotic area, d. Notice that the hole  is in zone , 
but is very close to L, which belongs to the boundaries of both  
and d. With further decreases of b, this hole makes contact with L. It 
may be established that such a contact will be the next contact 
bifurcation, but its effect will be different from the preceding ones.
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FIGURE 5-28.

Some holes have 
now rejoined.
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Enlargement, show-
ing the new holes 
below L in darker 
shading.

FIGURE 5-30.

Enlargement, show-
ing the attractor and 
basin with holes.
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Stage 11, b = -0.598727 

This is the stage of contact predicted in Stage 10. The hole, 
, is tangent to L. The boundary F becomes tangent to the 

boundary of d at infinitely many points. These points comprise 
the trajectory of the point  shown in Fig. 5-34. See Fig. 5-31, 
and its enlargements, Figs. 5-32 to 5-36.

The boundary of d has contact with the hole , as well as 
with all its images up to the main hole, and the sector  and its 
images. These create the tangency of infinitely many tongues of 
d in the inset of P, as shown in Fig. 5-36. This is an example of 
homoclinic tangency: the tangency of the outset of the saddle 
point P to the inset of P. As the trajectory of this point of tan-
gency tends to P in both future and past iterations, it is same-
tending, or homoclinic, in the language of Poincaré.

The rank 1 preimage of the point  is a point  of  
within the chaotic area d (see Fig. 5-35). This tangency of the 
attractor and its basin boundary will cause an explosion of holes 
inside the chaotic area. We leave this to the interested reader to 
explore using the software ENDO, available through the com-
panion CD-ROM.

The difference between this third contact bifurcation and 
those proceeding is that we have here a contact between the 
boundary of d, a chaotic area, and the boundary, F, of its 
basin.This contact causes the destruction of the chaotic area d, 
which is changed from an attractor to a repellor. The hole 

 (the preimage of ) possesses an arborescent 
sequence of preimages inside the chaotic area, d, leaving a cha-
otic repellor. Nearby trajectories are now attracted to other 
attractors, at infinity.
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FIGURE 5-31.

The third contact 
bifurcation.

FIGURE 5-32.

Enlargement of a 
rectangle near the 
center of Fig. 5-31.
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The basic hole.
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contact. 
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A preimage of the 
point of contact.

FIGURE 5-36.

Many contacts of 
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chaotic area and the 
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basin.
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