
                                     
CHAPTER 2

BASIC CONCEPTS IN 1D

In the preceding chapter we introduced a brief list of basic con-
cepts of discrete dynamics. Here, we expand on these concepts in 
the one-dimensional context, in which, uniquely, we have the 
advantage of a simple graphical representation. The official, 
abstract definitions of all these concepts may be found in the 
Appendices.

2.1 MAPS

By a map we mean a continuous function from a space, called 
the domain, to itself.1 In the one-dimensional context, the domain 
might be an interval (with or without endpoints) of the real number 
line, or even the entire line. 

If f is a map on a real interval, I, we indicate this in symbols 
. For example, if the map is defined by the rule , 

and I is the closed interval [-2, 2], we may visualize the map graph-
ically, as shown in Fig. 2-1. The action of the map is to move points 
from the horizontal axis to the vertical axis in two strokes: 

• vertically from the horizontal axis to the graph, 

• horizontally from the graph to the vertical axis,

as shown in Fig. 2-2. 

The image (or range) of the map is the set of all points obtained 
as f(x) while x takes on all values in the domain, I, and is written in 

1.  The word continuous belongs to the branch of math known as point-set topology. This 
wonderful subject is not known as well as it ought to be, but nevertheless, we must use 
it constantly.

f :I I→ f x( ) x2=
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symbols as f[I]. For a point y in I, a preimage of rank 1 is a point x 
in I that is mapped to y; that is, x is a preimage of rank 1 of y if y = 
f(x). A preimage of rank 2 of y is a preimage of rank 1 of a preimage 
of rank 1, and so on. Every point y in I has a set of preimages of 
every rank, which may be empty. Determining all preimages of a 
point creates a genealogical tree, called the arborescent sequence of 
preimages.

The map f is one-to-one, if, for every point y in I, the set of pre-
images of y has either no points or just one point. For example, the 
map f defined by the same rule, , but with the smaller 
domain [0, 1], is one-to-one. A one-to-one map has a unique inverse 
map, : which undoes what f does. This can be visual-
ized on the graph of f as a motion in two strokes:

• horizontally from the vertical axis to the graph of f,

• vertically from the graph to the horizontal axis,

as shown in Fig. 2-3.

Note that if we try to invert the map of Fig. 2-2 by this two-
stroke process, we discover all of the preimages of a given point y 
in I (represented as the vertical axis) in one step. This is shown in 
Fig. 2-4, where we find two preimages.

In this text we will be concerned exclusively with the lowest 
step of the staircase to chaos, the 1D case. We will be interested 
especially with maps which are not one-to-one. These are called 
many-to-one, or noninvertible, maps. For such maps, points gener-
ally have more than one preimage of rank 1, and the number of 
preimages of a given rank determines a zone of multiplicity, dis-
cussed below.

2.2 MULTIPLICITIES

Given any map of an interval I, we may choose a point y in I on 
the vertical axis, locate all preimages by the graphical method, and 
count them up. Thus, we may decompose the vertical axis into sets 

f x( ) x2=

f 1– f I[ ] I→
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FIGURE 2-1.

Graph of f on 

I = [-2, 2].

FIGURE 2-2.

Two strokes from a point 
x to its image y.
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of points all sharing the same number of preimages. We denote 
these zones by:

•  (all points having no preimages)

•  (all points having exactly one preimage)

•  (all points having two distinct preimages)

and so on.

These are called the layer sets of the map; those sets that are 
nonempty and open (that is, have no boundary points) are called 
multiplicity zones. The zones  and  are shown in Fig. 2-5. 
They exhaust the whole interval I = [_2, 2] except for the point 0, 
which separates the two zones. We also say this map is of type  – 

, meaning there are two zones, one of multiplicity zero, the other 
of multiplicity two. The suffix indicates the multiplicity. The inter-
val , may be considered a folded image, that is, two halves of the 
domain I are folded onto this image. For each half of the domain, 
our map does have an inverse. These are called partial inverses.

The point 0 is the only point of  in this example; that is, it has 
multiplicity one (its unique preimage is 0). It is called a critical 
point because it lies on the boundary of two zones. In fact, we can 
describe this map as a nonlinear folding. That is, the map folds the 
horizontal axis at the critical point, then stretches them in a nonlin-
ear fashion onto the range interval. This is why the critical point is 
sometimes called a fold point.

Generally, we will be interested in relatively simple maps, such 
as polynomials, in which only finite multiplicities, with generic 
(that is, typical) fold points, are encountered. We call these finitely 
folded maps. For example, a typical cubic map has multiplicities 1 
and 3, and we say it is of type  –  – . These basic concepts 
of iteration theory should be approached through a careful study of 
simple (for example, polynomial) examples.
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FIGURE 2-3.

Two strokes from a point 
y to its preimage of rank 
1.

FIGURE 2-4.

Finding all preimages of 
rank 1 of a point y.
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2.3 TRAJECTORIES AND ORBITS

A map generates a discrete dynamical system by iteration. That 
is, the map is applied again and again, and points move along a dot-
ted path called a trajectory. For example, choosing an initial point 

, let  denote its image under the map f, likewise  the image 
of , and so on. The infinite sequence ( , , ,...) is the trajec-
tory of . This sequence may jump around a finite set of points. 
The minimum set of points which holds a trajectory its called its 
orbit. When finite, an orbit is called cyclic, or periodic, and the 
number of its points is its order. A fixed point, defined by f(x) = x, is 
a special kind of periodic point, the orbit of which is a single point. 
It has order 1. If an orbit contains only two points, it is called a 2-
cycle, and so on.

We now describe a graphical method for plotting trajectories, 
called the Koenigs-Lemeray method. Note that in our graphs, both 
axes represent the same set, since the domain and range of our map 
consist of the same interval.

Given , envisioned on the horizontal axis, we may find  on 
the vertical axis by the two-stroke method described in 2.1. Next, 
we must repeat this process, starting from the point  on the hori-
zontal axis. Our immediate problem, then, is to transfer the distance 

 from the vertical axis to the corresponding distance on the hori-
zontal axis. 

One way to carry out this transfer is shown in Fig. 2-6. Here we 
use a compass to measure the vertical distance, , and rotate it to 
the horizontal distance, . Another method is to use a protractor to 
construct a line descending at slope -1, or 45 degrees, as shown in 
Fig. 2-7.

Yet another method — and this is the one we prefer — is shown 
in Fig. 2-8. We draw a line from the lower left corner, ascending at 
slope 1. This line is called the diagonal (in symbols, ). Now, using 
only a square, we draw a horizontal line from  on the vertical axis 
until it meets , then draw a vertical line until it meets the horizon-
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The multiplicity zones 
for a quadratic function 
on [-2, 2].

FIGURE 2-6.

The compass 
construction.
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The descending line 
method.

FIGURE 2-8.

The square two-stroke 
method.
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tal axis. This determines the horizontal distance, , as shown in 
Fig. 2-8.

The entire construction from horizontal  to vertical  to hor-
izontal  may now be summarized as follows:

• vertical from horizontal axis to graph,

• horizontal from graph to vertical axis,

• horizontal from vertical axis to diagonal,

• vertical from diagonal to horizontal axis.

This construction may be abbreviated somewhat since the third 
stroke retraces (undoes) part of the second, as shown in the four 
strokes of Fig. 2-9. The abbreviated construction (Fig. 2-10) is:

• vertical from horizontal axis to graph,

• horizontal from graph to diagonal,

• vertical from diagonal to horizontal axis.

This is the three-stroke graphical method for plotting one step 
of a trajectory within the horizontal axis. When we proceed to plot 
the point  by this method, however, we find a further opportunity 
for abbreviation. The last stroke above, which locates  on the hor-
izontal axis, i.e.,

• vertical from diagonal to horizontal axis,

is followed by the first stroke of the second step,

• vertical from horizontal axis to graph,

which may be combined into a single stroke,

• vertical from diagonal to graph.

Thus the iterated sequence, beginning with  on the horizontal 
axis, is:

• vertical from horizontal axis to graph,

• horizontal from graph to diagonal,

• vertical from diagonal to graph,

x1
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x1

x0
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The four strokes from a 
point on the horizontal 
axis to its image on the 
horizontal axis.

FIGURE 2-10.

The abbreviated three-
stroke method.
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One step, consisting of 
two strokes on the 
diagonal.

FIGURE 2-12.

The staircase method of 
Koenigs and Lemeray.
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and continue. After the first step, we may pretend that we are jump-
ing about on the diagonal, which after all is just another copy of the 
domain interval I. Each step has two strokes, 

• vertical to the graph; horizontal to the diagonal

(which we may remember by the mnemonic, vertigo-horrid), as 
shown in Fig. 2-11. That is the graphical method of Koenigs-Lem-
eray, also known as the staircase method, or cobweb construction. 
Using it, we may quickly follow trajectories for several jumps on 
the diagonal. See Fig. 2-12.

Using this method, one may graphically verify this useful fact: 
if a point returns to its starting point after two iterations of the map, 
the starting point is either a fixed point or a 2-periodic point of the 
map.

2.4 ATTRACTORS, BASINS, AND BOUNDARIES

Try out the staircase method using the Myrberg map,1 
, with the entire real line as the domain, and various 

values for the control parameter, c. You may quickly find that some 
trajectories converge to a fixed point, while others run off to positive 
infinity (upper right) on the diagonal. The fixed points are seen 
immediately as the crossing points of the graph and the diagonal, 
and are defined by the property: f(x) = x.

An interval is called trapping if it is mapped into itself, and 
invariant if it is mapped exactly onto itself. If a bounded interval is 
trapping, then all of its trajectories are trapped inside, and must 
converge to a closed, invariant, and bounded limit set. These limit 
sets are the attractors of the map. Attractors may be classified in 
three categories: 

• a point attractor is a single point,

• a cyclic attractor is a finite set of points, and

1.  Myrberg was one of the first to study the bifurcation sequence of this map. See the Bib-
liography for references to his work.

f x( ) x2 c–=
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• a chaotic attractor is any other type of attractor.1

The basin of an attractor is the set of all points tending to that 
attractor. The domain is decomposed into the basins of different 
attractors, including the basin of infinity, which consists of all 
points whose trajectories run away from any bounded set.

The boundaries of the basins, also called frontiers or separa-
trices, are of primary importance in dynamical systems theory. A 
detailed study of a map results in a portrait, in which the domain is 
decomposed into basins, one attractor shown in each. 

2.5 BIFURCATIONS

As in the Myrberg map, , we frequently encoun-
ter maps which depend on a parameter. As the parameter is 
changed, the portrait of the attractive set of the map may change 
gradually and insignificantly; however, as certain special values of 
the parameter are crossed, there may be a sudden and significant 
change in the portrait of the map. These special values are called 
bifurcation points, and the sudden changes in the portrait are called 
bifurcations. At the present time, dynamical systems theory does 
not have a satisfactory and rigorous definition of bifurcation, but the 
subject is now evolving through the study of examples. In fact, the 
goal of this book is to describe some of these examples, in a two-
dimensional context. 

In the current one-dimensional context, we again have the bene-
fit of an excellent visualization device, the response diagram. In the 
case of a single control parameter, this is a two-dimensional graphic 
in which the vertical axis represents the domain of the map and the 
horizontal axis represents the control parameter. Above each point 
on the horizontal axis, the portrait of the corresponding map is indi-
cated, with its attractors, basins, and basin boundaries. For a one-
parameter family of maps of a two-dimensional domain, the 
response diagram is three-dimensional, as we will soon see.

1.  This reflects the fact that different definitions of chaos abound in the literature.

f x( ) x2 c–=
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2.6 EXEMPLARY BIFURCATION

The simplest bifurcations are the fold and the flip. These may 
involve changes to any kind of attractor. To introduce the basic con-
cepts of bifurcation theory, however, we will describe the fold 
bifurcation in the simplest case, which involves point attractors.

The fold bifurcation is a catastrophic bifurcation. This means 
that, as the control parameter varies, an attractor appears or disap-
pears suddenly. In this event, as shown in Fig. 2-13 with the control 
parameter moving to the right on the horizontal axis, a fixed point 
appears, and immediately separates into a pair of distinct fixed 
points. One is an attractor, the other, a repellor. The repellor is 
shown below the attractor. Points between the two fixed points are 
attracted to the upper fixed point, and repelled by the lower fixed 
point. These tendencies are indicated by the arrows in Figures 2-15 
to 2-17.

To understand the mechanism of this bifurcation, we now turn 
to a specific example, the Myrberg family of maps, . 
The graph of a map of this family is an upward-opening parabola, 
with the vertex on the vertical axis at distance c below the horizon-
tal axis. As c increases, the parabola moves downward. Three cases 
of this graph are shown in Figs. 2-14, 2-15, and 2-16. 

In the first case, Fig. 2-14, with c = – 0.5, the parabola does not 
meet the diagonal because for this value of c, there are no fixed 
points. All trajectories tend upward without bound, to infinity.

In the next case, Fig. 2-15, with c = – 0.25, the parabola meets 
the diagonal in a single point, which is the fixed point x = 0.5, corre-
sponding to this value of c, the bifurcation value. Trajectories 
approach from below, but depart from above.

In the last case, Fig. 2-16, with c = 0, the parabola cuts the diag-
onal in two points, the fixed points x = 0 and x = 1, which are, 
respectively, an attractor and a repellor.

f x( ) x2 c–=
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FIGURE 2-13.

The response diagram of 
a fold bifurcation. The 
state space, where the 
dynamics occur, is verti-
cal. The control 
parameter, c, is horizon-
tal. The parabolicoid 
curves locate the fixed 
points of the maps. The 
bifurcation occurs, in the 
Myrberg example, when 

c = –0.25.

FIGURE 2-14.

A typical member of the 
Myrberg family, before 
the fold bifurcation. The 
graph of the map is 
entirely above the diago-
nal, so there are no fixed 
points.
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At the fold bifurcation. 
The graph of the map 
has made contact with 
the diagonal at a single 
fixed point.

FIGURE 2-16.

After the fold bifurca-
tion. The graph now 
meets the diagonal in 
two points, both fixed.
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The flip is a subtle bifurcation. This means that, in contrast to 
catastrophic and explosive bifurcations, its effect is too subtle to 
observe at the moment of bifurcation when the control parameter 
passes its critical value, but becomes apparent later, as the parame-
ter continues to increase. In the flip, a point attractor loses its 
attractiveness. From it is emitted a cyclic attractor of period 2. 

A response diagram of this event is shown in Fig. 2-17. To the 
left of the bifurcation value of the control parameter (horizontal 
axis) there is a single fixed point, and it is an attractor, FP+. The 
attraction in the vertical state space is shown by the heavy arrows. 
To the right, there is still only one fixed point, but it is a repellor, 
FP-. But there is also a 2-cycle, which is attractive, 2P+. Looking 
only at the attractors in the picture, we see that the attractive point 
has been replaced by an attractive 2-cycle, as the control parameter 
moves to the right. At first, the two points of this 2-cycle are very 
close together, then they gradually separate.

We now move on to two dimensions.
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