
                              
CHAPTER 3

BASIC CONCEPTS IN 2D

The basic concepts named in the Introduction, and described in 
the preceding chapter in a 1D context, apply with little modification 
in the 2D context which is our main concern in this book. We no 
longer have the convenience of a visible graph of the map, however, 
because the graph of a 2D map is a 2D surface in a 4D space. 
Therefore, we must be satisfied with a frontal view of the 2D 
domain of the map, in which we try to visualize as much as 
possible.

3.1 MAPS

As before, by map we mean a continuous function from the 
domain to itself, . From now on, the domain will be a two-
dimensional subset, usually an open subspace, of the plane. For 
example, D might be an open rectangle (that is, not containing its 
boundary) or the whole plane. The images and preimages of a point, 
the one-to-one property, and noninvertibility are defined as in 2.1. 
We now consider noninvertible maps, in 2D.

Note: The complex number maps familiar from the fractal theo-
ries of Fatou, Julia, Mandelbrot, and others may be regarded as real 
2D maps. Thus, they fit in the context of this book.

3.2 MULTIPLICITIES AND CRITICAL CURVES

In the context of a given map, we define the layer set, , as the 
set of points having exactly n preimages of rank 1, where n is a nat-
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ural number: 0, 1, 2,..., and so on. Those layer sets that are 
nonempty open sets are the multiplicity zones. Points on the bound-
aries of the zones, generally, are critical points of the map. In 
general, these sets will not exhaust the domain, as there may be 
points that have infinitely many preimages of rank 1, and thus do 
not belong to  for any n. Even polynomial maps may have this 
problem, but generic (that is, almost all) polynomial maps have the 
following nice properties: 

• there are only a finite number of layer sets;

• they exhaust the domain;

• the zones of multiplicity fill almost all of the domain;

• all layer sets that are not multiplicity zones consist of criti-
cal points, arranged in a set of piecewise smooth curves.

A map having these nice properties is called a finitely folded 
map, and a curve consisting of critical points is called a critical 
curve of rank 1, and is denoted by L.1 The image of a critical curve 
of rank 1 is a critical curve of rank 2, denoted , and so on. 

Note: For a given map T, , where  is the criti-
cal curve of rank 0, and may be thought of as the set of “coincident 
preimages” of points of L. 

3.3 AN EXAMPLE

For example, let D be the entire plane. The polynomial map 
 defined by f(x, y) = (u, v), where,

(EQ 3)

is finitely folded. We will set a = – 0.7, and b = 1.0.

1.  In the original literature, L is usually denoted by LC, for the French term, ligne critique. 
More rigorous definitions may be found in Appendix 3. 
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Figure 3-1 shows part of the domain of the map, the (x, y) space 
D, containing the critical curve of rank 0, , which coincides 
with the y axis. It divides the domain into two regions, denoted  
and . Figure 3-2 shows part of the image of the map f, in the (u, 
v) space, with the zones of multiplicities zero and two,  and , 
separated by the critical curve, L. Figure 3-3 shows the two spaces, 
superimposed.

There is a folding of the (x, y) space, on the critical curve of 
rank 0, , followed by a nonlinear deformation, a rotation, and a 
movement to the right, into the space of (u, v). The entire (x, y) 
space ends up on the zone , with the critical curve  moving 
onto the critical curve, L. We may visualize the two regions of the 
(x, y) space,  and  folded onto one another, then distorted and 
pressed down onto . Actually, the two regions mapped are onto 
one.

The motion, visualized in this way, may be reversed. This pro-
vides a method to visualize the action of the inverse mapping as 
well. A small area in the (u, v) space on the right, if contained 
entirely within , will unfold into two small regions in the (x, y) 
space on the left, one in the region , the other in .

As we wish to iterate the map, and to visualize the trajectories, 
attractors, and basins, of our discrete dynamical system, it will be 
useful (although initially confusing) to superimpose the (u, v) space 
on top of the (x, y) space. Then, as a weak substitute for the graphi-
cal method of Koenigs-Lemaray in the 1D case, we apply the 
motion from Fig. 3-1 to Fig. 3-2 again and again. The domain, D, is 
mapped into itself repeatedly. The curve  moves onto the curve 
L, which in turn moves onto the curve , and so on. This superim-
position is shown in Fig. 3-3. This portrait is the basis of the method 
of critical curves, which is the main method of this book.
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FIGURE 3-1.

The domain of (x, y) 
divided by the critical 
curve, x = 0.

FIGURE 3-2.

The range of (u, v) 
divided by the critical 
curve, v = b = 1.0. The 
image of the map is 
above L. 
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3.4 TRAJECTORIES AND ORBITS

In the 2D context, trajectories and orbits are defined exactly as 
in 2.3,. but here they must be plotted in the two-dimensional 
domain. This is particularly appropriate for computer-generated 
plots. And in this computational method, the attractors and their 
basins may be discovered by experiment. We usually find the criti-
cal curve of rank – 1 manually by the standard method of vector 
calculus (involving the vanishing of the Jacobian determinant, see 
Appendix 3), then enter its symbolic description into the computer 
program, which can then plot the higher-order iterates. The method 
of critical curves is based on experiments such as this.

As in the 1D case, there are special kinds of orbits which are 
important qualitative features of the dynamics of an iterated map. 
First among these are the fixed points, which are unmoved by the 
map. The different types of fixed points are defined by the motions 
of nearby points. The classification is based on the differential cal-
FIGURE 3-3.

The image of the map, 
superimposed on the 
domain.
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culus and linear algebra of two-dimensional spaces, but we will 
give here only the results. Excepting certain unusual cases, there are 
five kinds of so-called generic fixed points in this classification. The 
five types are illustrated in Figs. 3-4 to 3-8. 

Another special type of orbit of great importance in the qualita-
tive theory is the periodic orbit, or cyclic orbit, or cycle, which 
consists of a finite set of points. The map permutes the points of the 
orbit cyclically: If there are n points in the orbit, each of the points 
returns to its original position after exactly n iterations of the map. 
The number n is called the period of the orbit, which is also called 
an n-cycle. A point of an n-cycle is said to have prime period n, and 
is also a fixed point of the map iterated n times. Periodic points are 
classified according to their type as a fixed point of the iterated 
map. 
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FIGURE 3-4.

Attractive focus. All 
nearby points are 
attracted and spiral 
toward the fixed point.
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FIGURE 3-5.

Attractive node. All 
nearby points are 
attracted, and tend to 
approach along a curve 
through the fixed point.

FIGURE 3-6.

Saddle. A repellor, most 
nearby points are 
attracted, and then 
repelled along a curve 
through the fixed point.
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FIGURE 3-7.

Repelling node. All 
nearby points are 
repelled, and tend to 
depart (at least briefly) 
along a curve through 
the fixed point. The 
opposite of an attractive 
node.

FIGURE 3-8.

Repelling focus. All 
nearby points depart, 
spiralling away from the 
fixed point. The opposite 
of an attractive node.
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3.5 ATTRACTORS

As in the 1D case, there are three types of attractors:

• static attractors, also called attractive fixed points;

• periodic attractors, also called cyclic attractors; and

• chaotic attractors.

The static attractors are fixed points which are attractive, that is, 
the trajectories of all nearby points are attracted to them. Of the five 
types of fixed points illustrated in Figs. 3-4 to 3-8, two are attrac-
tive, and three repelling. Periodic attractors are periodic orbits 
(orbits of trajectories that cycle around a finite point set) which are 
attractive.

Chaotic attractors are more complicated sets which are attrac-
tive. For the mathematically inclined, technical definitions are given 
in Appendix 2. For others, these concepts will gain meaning 
through examples later in the book.

3.6 BIFURCATIONS

The informal definition of bifurcation, in 2D, is the same as in 
1D. Again, there are subtle and catastrophic bifurcations, and other 
distinctions such as local versus global bifurcations. These are best 
understood in the examples dissected in detail in the following 
chapters.

In the 2D context, a one-parameter family of maps may be dis-
played in a response diagram, in which the bifurcations may be 
seen and analyzed. This is a 3D plot in which the domain of the 
maps, a 2D set, is arrayed vertically, and moved along a horizontal 
axis representing the control parameter. In each of these vertical 
planes, the portrait of attractors, basins, and boundaries must be 
visualized. In practice, this is a challenging task of computer graph-
ics, and we usually seek a simpler display. The technique we adopt 
for this book, which is well accommodated by computer graphic 
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animation technology and CD-ROM media, is the animated movie. 
Thus, we translate the control parameter into the time dimension 
and view the domain of the map head on, watching the attractor-
basin portrait adjust itself to a time-changing control parameter.

The method of characteristic curves becomes a strategy for the 
analysis of these bifurcation movies. So, on to the exemplary bifur-
cation sequences.
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